\(Cho:\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)
\(Tính:\frac{xy}{z^2}+\frac{xz}{y^2}+\frac{zy}{x^2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x^2+1>=2x suy ra 1/x^2+1=y<=1/2x+y=1/x+x+y=1/9(9/x+x+y)<=1/x+1/x+1/y.
A(BT)<=1/9(3/x+3/y+3/z)=1/3(1/x+1/y+1/z)
Mà từ x+y+z=xy+yz+zx suy ra x+y+z=xy+yz+zx>=3
dễ dàng cm bằng phương pháp đánh giá suy ra 1/x+1/y+1/z<3
suy ra A<1/3.3=1(đpcm)
\(x^2+xy+y^2=\left(x+y\right)^2-xy\ge\left(x+y\right)^2-\frac{1}{4}\left(x+y\right)^2=\frac{3}{4}\left(x+y\right)^2\)
\(\Rightarrow\sqrt{x^2+xy+y^2}\ge\frac{\sqrt{3}}{2}\left(x+y\right)\)
Vậy:
\(P\ge\frac{\sqrt{3}}{2}\left[\frac{\left(x+y\right)^2}{1+4xy}+\frac{\left(y+z\right)^2}{1+4yz}+\frac{\left(z+x\right)^2}{1+4zx}\right]\)
\(P\ge\frac{\sqrt{3}}{2}\left[\frac{\left(2x+2y+2z\right)^2}{3+4\left(xy+yz+zx\right)}\right]\ge\frac{\sqrt{3}}{2}.\frac{9}{3+\frac{4}{3}\left(x+y+z\right)^2}=\frac{3\sqrt{3}}{4}\)
Dấu "=" xảy ra khi \(x=y=z=\frac{1}{2}\)
\(\sqrt{x^2+xy+y^2}\ge\frac{\sqrt{3}}{2}\left(x+y\right)\) mà sao thế vào là \(\frac{\sqrt{3}}{2}\left(x+y\right)^2\) vậy ạ?
Đặt bài toán phụ : Chứng minh nếu \(a+b+c=0\Rightarrow a^3+b^3+c^3=3abc\)
Thật vậy :
\(a^3+b^3+c^3=\left(a+b+c\right)^3-3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
\(a+b+c=0\Rightarrow\left(a+b+c\right)^3=0\)
\(a+b=-c\)
\(b+c=-a\)
\(c+a=-b\)
\(\Rightarrow\left(a+b+c\right)^3-3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
\(=-3\left(-c\right)\left(-b\right)\left(-a\right)\)
\(=3abc\)
Trở lại bài toán chính :
Ta có:
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)
\(\Rightarrow\frac{yz}{xyz}+\frac{xz}{xyz}+\frac{xy}{xyz}=0\)
\(\Rightarrow\frac{yz+xz+xy}{xyz}=0\)
\(\Rightarrow xy+xz+yz=0\)
\(\Rightarrow\left(xy\right)^3+\left(xz\right)^3+\left(yz^3\right)=3\left(xy\right)\left(xz\right)\left(yz\right)=3x^2y^2z^2\)
Lại có:
\(P=\frac{xy.y^2x^2}{x^2y^2z^2}+\frac{xz.z^2.x^2}{x^2y^2z^2}+\frac{z^2.y^2.yz}{x^2y^2z^2}\)
\(=\frac{\left(xy\right)^3}{x^2y^2z^2}+\frac{\left(xz\right)^3}{x^2y^2z^2}+\frac{\left(yz\right)^3}{x^2y^2z^2}\)
\(=\frac{\left(xy\right)^3+\left(xz\right)^3+\left(yz^3\right)}{x^2y^2z^2}\)
Thay \(\left(xy\right)^3+\left(xz\right)^3+\left(yz^3\right)=3x^2y^2z^2;\)ta có:
\(P=\frac{3x^2y^2z^2}{x^2y^2z^2}\)
\(=3\)
Vậy \(P=3.\)