K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 4 2022

ta có BC//AD và SA vuông BC => SAD=90

(SD,BC)=(SD,AD)=SDA

xét tam giác SAD vuông tại A có tan(SDA)=SA/AD=\(\sqrt3\) suy ra SDA=60

23 tháng 1 2017

Đáp án A.

Ta có S A ⊥ ( A B C D )  nên A là hình chiếu của S trên mặt phẳng  A B C D   . Suy ra AD là hình chiếu của SD trên mặt phẳng A B C D .

Khi đó  S D , A B C D ^ = S D , A D ^ = S D A ^    (do S D A ^ < 90 ° ).

Do Δ S A D  vuông tại A nên  tan S D A ^ = S A A D = a 3 a = 3 ⇒ S D A ^ = 60 °   .

Vậy S D , A B C D ^ = 60 ° .

20 tháng 6 2018

Chọn A.

Phương pháp:

Cách giải:

NV
16 tháng 4 2021

\(\left\{{}\begin{matrix}SA\perp\left(ABCD\right)\Rightarrow SA\perp BC\\AB\perp BC\end{matrix}\right.\) \(\Rightarrow BC\perp\left(SAB\right)\Rightarrow BC\perp AM\) (1)

Tam giác SAB vuông cân tại A (do SA=SB=a)

\(\Rightarrow AM\perp SB\) (trung tuyến đồng thời là đường cao) (2)

(1);(2)\(\Rightarrow AM\perp\left(SBC\right)\Rightarrow AM\perp SC\)

Hoàn toàn tương tự ta có \(AN\perp SC\)

\(\Rightarrow SC\perp\left(AMN\right)\Rightarrow\left(SAC\right)\perp\left(AMN\right)\)

Từ A kẻ \(AH\perp SC\Rightarrow H\in\left(AMN\right)\)

Lại có \(SA\perp\left(ABCD\right)\Rightarrow\left(SAC\right)\perp\left(ABCD\right)\)

\(\Rightarrow\widehat{HAC}\) là góc giữa (AMN) và (ABCD)

\(AC=a\sqrt{2}\) ; \(SC=a\sqrt{3}\)

\(sin\widehat{HAC}=cos\widehat{SCA}=\dfrac{AC}{SC}=\sqrt{\dfrac{2}{3}}\Rightarrow\widehat{HAC}\approx54^044'\)