K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 4 2022

\(\dfrac{4n+7}{n+1}=\dfrac{n+1+n+1+n+1+n+1+3}{n+1}=1+1+1+1+\dfrac{3}{n+1}\)

Để nguyên thì \(\dfrac{3}{n+1}\in Z\) \(\Rightarrow n+1\in U\left(3\right)=\left\{\pm1;\pm3\right\}\)

- n+1=1 => n=0

- n+1=-1 => n=-2

- n+1=3 => n=2

- n+1=-3 => n=-4

Vậy \(n=\left\{0;-2;2;-4\right\}\)

whatttt :)))???

Đoạn cuối phải là \(\in\) chứ saoooo lại \(=\) vậyyyyyy

27 tháng 2 2016

a/ Để \(\frac{n+3}{n-2}\) âm => \(\frac{n+3}{n-2}<0\)       mà  n - 2 < n + 3 => n - 2 < 0 => n < 2

Vậy n < 2 thì \(\frac{n+3}{n-2}\) là số âm.

b/ Để \(\frac{n+7}{3n-1}\) nguyên => n + 7 chia hết cho 3n - 1

=> 3 (n + 7) chia hết cho 3n - 1

=> 3n + 21 chia hết cho 3n - 1

=> 22 chia hết cho 3n - 1

=> 3n - 1 ∈ Ư(22) 

=> 3n - 1 ∈ { ±1 ; ±2 ; ±11 ; ±22 }

- Nếu 3n - 1 = 1 => 3n = 2 => n = 2/3 (ko thỏa mãn n ∈ Z)

- Nếu 3n - 1 = -1 => 3n = 0 => n = 0 (thỏa mãn)

- Nếu 3n - 1 = 2 => 3n = 3 => n = 1 (thỏa mãn)

- Nếu 3n - 1 = -2 => 3n = -1 => n = -1/3 (ko thỏa mãn n ∈ Z)

- Nếu 3n - 1 = 11 => 3n = 12 => n = 4 (thỏa mãn)

- Nếu 3n - 1 = -11 => 3n = -10 => n = -10/3 (ko thỏa mãn n ∈ Z)

- Nếu 3n - 1 = 22 => 3n = 23 => n = 23/3 (ko thỏa mãnn ∈ Z)

- Nếu 3n - 1 = -22 => 3n = -21 => n = -7 (thỏa mãn)

Vậy n ∈ { 0 ; 1 ; 4 ; -7 } thì \(\frac{n+7}{3n-1}\)  là số nguyên.

c/ Để \(\frac{3n+2}{4n-5}\in N\) => 3n + 2 chia hết cho 4n - 5

=> 4 (3n + 2) chia hết cho 4n - 5

=> 12n + 8 chia hết cho 4n - 5

=> 23 chia hết cho 4n - 5 

=> 4n - 5 ∈ Ư(23)

=> 4n - 5 ∈ { 1 ; 23 }

- Nếu 4n - 5 = 1 => 4n = 6 => n = 3/2 (ko thoả mãn n ∈ Z)

- Nếu 4n - 5 = 23 => 4n = 28 => n = 7 (thỏa mãn)

Vậy n = 7 thì \(\frac{3n+2}{4n-5}\in N\)

26 tháng 5 2015

A=\(\frac{4n+1}{2n+3}=\frac{2\left(2n+3\right)-5}{2n+3}=2+\frac{-5}{2n+3}\)

Để A nguyên thì \(\frac{-5}{2n+3}\) phải nguyên

=> \(2n+3\inƯ\left(-5\right)=\left\{1;-1;5;-5\right\}\)

=> \(n\in\left\{-1;-2;1;-4\right\}\)

6 tháng 8 2016

Cảm ơn nah

AH
Akai Haruma
Giáo viên
7 tháng 9 2024

a/

Với $n$ nguyên, để $\frac{-18}{n}$ là số nguyên thì $n$ là ước của $-18$

$\Rightarrow n\in \left\{\pm 1; \pm 2; \pm 3; \pm 6; \pm 9; \pm 18\right\}$

b.

Với $n$ nguyên, để $\frac{n+7}{3n-1}$ nguyên thì:

$n+7\vdots 3n-1$

$\Rightarrow 3(n+7)\vdots 3n-1$

$\Rightarrow (3n-1)+22\vdots 3n-1$

$\Rightarrow 22\vdots 3n-1$

$\Rightarrow 3n-1\in\left\{\pm 1; \pm 2; \pm 11; \pm 22\right\}$

$\Rightarrow n\in \left\{\frac{2}{3}; 0; 1; \frac{-1}{3}; 4; \frac{-10}{3}; \frac{23}{3}; -7\right\}$

Do $n$ nguyên nên $n\in\left\{0; 1; 4; -7\right\}$

AH
Akai Haruma
Giáo viên
7 tháng 9 2024

a/

Với $n$ nguyên, để $\frac{-18}{n}$ là số nguyên thì $n$ là ước của $-18$

$\Rightarrow n\in \left\{\pm 1; \pm 2; \pm 3; \pm 6; \pm 9; \pm 18\right\}$

b.

Với $n$ nguyên, để $\frac{n+7}{3n-1}$ nguyên thì:

$n+7\vdots 3n-1$

$\Rightarrow 3(n+7)\vdots 3n-1$

$\Rightarrow (3n-1)+22\vdots 3n-1$

$\Rightarrow 22\vdots 3n-1$

$\Rightarrow 3n-1\in\left\{\pm 1; \pm 2; \pm 11; \pm 22\right\}$

$\Rightarrow n\in \left\{\frac{2}{3}; 0; 1; \frac{-1}{3}; 4; \frac{-10}{3}; \frac{23}{3}; -7\right\}$

Do $n$ nguyên nên $n\in\left\{0; 1; 4; -7\right\}$

1 tháng 11 2017

Ta thấy \(n\ge1\)

với \(n=1\Rightarrow n^2+n^5+1=3\)là số nguyên tố

Với n > 1

Ta có  \(n^7+n^5+1=\left(n^2+n+1\right)\left(n^5-n^4+n^3-n+1\right)>n^2+n+1>1\)

\(\Rightarrow n^2+n+1\)là ước của\(n^7+n^5+1\)( loại)

\(\Leftrightarrow n=1\)

2 tháng 11 2017

Dễ thấy : 
<br class="Apple-interchange-newline"><div id="inner-editor"></div>n1

Với n=1 => n7+n5+1=3 là số nguyên tố

Với n>1

Ta có n7+n5+1=(n2+n+1)(n5-n4+n3-n+1) >  n2+n+1 > 1

=> n2+n+1 là ước của n7+n5+1(loại)

Vậy n=1

 
 
9 tháng 6 2015

Để A là số nguyên thì

4n+1\(^._:\)2n+3

=>4n+6-5\(^._:\)2n+3

Vì 4n+6\(^._:\)2n+3

=>5\(^._:\)2n+3

=>2n+3\(\in\)Ư(5)={1;-1;5;-5}

Ta có bảng sau:

2n+3n
1-1
-1-2
51
-5-4

KL: n\(\in\){-1;-2;1;-4}