So sánh biểu thức A=\(\frac{2016^{16}+1}{2016^{15}+1}\) và B= \(\frac{2016^{16}+1}{2016^{15}+1}\)
Giúp tớ nhé !!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A<1 vì 14^15+3<14^16+3 mà B>1 vì 2016^2014+1>2016^2013+1
nên A<B
Ta có
\(2016A=\frac{2016^{2017}+2016}{2016^{2017}+1}=\frac{2016^{2017}+1}{2016^{2017}+1}+\frac{2015}{2016^{2017}+1}=1+\frac{2015}{2016^{2017}+1}\)
\(2016B=\frac{2016^{2016}+2016}{2016^{2016}+1}=\frac{2016^{2016}+1}{2016^{2016}+1}+\frac{2015}{2016^{2016}+1}=1+\frac{2015}{2016^{2016}+1}\)
Do \(\frac{2015}{2016^{2017}+1}< \frac{2015}{2016^{2016}+1}\Rightarrow2016A< 2016B\Rightarrow A< B.\)
B = \(\frac{2016^{2015}+1}{2016^{2016}+1}\)< A =\(\frac{2016^{2016}+1}{2016^{2017}+1}\)
Ta có :
\(A=\frac{2016^{2016}+2}{2016^{2016}-1}=\frac{\left(2016^{2016}-1\right)+3}{2016^{2016}-1}=1+\frac{3}{2016^{2016}-1}\)
\(B=\frac{2016^{2016}}{2016^{2016}-3}=\frac{\left(2016^{2016}-3\right)+3}{2016^{2016}-3}=1+\frac{3}{2016^{2016}-3}\)
Vì \(2016^{2016}-1>2016^{2016}-3\) nên \(\frac{3}{2016^{2016}-1}< \frac{3}{2016^{2016}-3}\)
\(\Rightarrow1+\frac{3}{2016^{2016}-1}< 1+\frac{3}{2016^{2016}-3}\)
\(\Rightarrow A< B\)
A = 15/14 + 16/15 + 17/16 + 18/17
Ta thấy :
15/14 > 1
16/15 > 1
17/16 > 1
18/17 > 1
=> A > 4
B tương tự
( ghi lại đề )
Ta có :
\(15A=\frac{15^{2016}+15}{15^{2016}+1}=\frac{15^{2016}+1+14}{15^{2016}+1}=\frac{15^{2016}+1}{15^{2016}+1}+\frac{14}{15^{2016}+1}=1+\frac{14}{15^{2016}+1}\)
\(15B=\frac{15^{2015}+15}{15^{2015}+1}=\frac{15^{2015}+1+14}{15^{2015}+1}=\frac{15^{2015}+1}{15^{2015}+1}+\frac{14}{15^{2015}+1}=1+\frac{14}{15^{2015}+1}\)
Vì \(\frac{14}{15^{2016}+1}< \frac{14}{15^{2015}+1}\) nên \(1+\frac{14}{15^{2016}+1}< 1+\frac{14}{15^{2015}+1}\) hay \(15A< 15B\)
\(\Rightarrow\)\(A< B\)
Vậy \(A< B\)
Chúc bạn học tốt ~
\(A=\frac{-7}{2016^{2015}}+\frac{-15}{2016^{2016}}=\frac{-7.2016}{2016^{2016}}+\frac{-15}{2016^{2016}}=\frac{-14127}{2016^{2016}}\)
\(B=\frac{-15}{2016^{2015}}+\frac{-7}{2016^{2016}}=\frac{-15.2016}{2016^{2016}}+\frac{-7}{2016^{2016}}=\frac{-30247}{2016^{2016}}\)
Vậy : A>B
\(A=\frac{2016^{2016}+2}{2016^{2016}-1};;B=\frac{2016^{2016}}{2016^{2016}-3}\)\(A=\frac{\left(2016^{2016}-1\right)+2+1}{2016^{2016}-1};;B=\frac{\left(2016^{2016}-3\right)+3}{2016^{2016}-3}\)\(A=1+\frac{3}{2016^{2016}-1};;B=1+\frac{3}{2016^{2016}-3}\);;Vì \(2016^{2016}-1>2016^{2016}-3\)Nên\(\frac{3}{2016^{2016}-1}< \frac{3}{2016^{2016}-3}\)Vậy \(A< B\)
\(2A=1+\frac{2}{2}+\frac{3}{2^2}+...+\frac{2016}{2^{2015}}\)
\(2A-A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2015}}-\frac{2016}{2^{2016}}\)
\(A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2015}}-\frac{1}{2^{2016}}< 1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2015}}\)(1)
Ta có
\(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2015}}=1+\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{2^2}+...+\frac{1}{2^{2014}}-\frac{1}{2^{2015}}\right)=1+\left(1-\frac{1}{2^{2015}}\right)\)
\(< 1+1=2\)(2)
Từ (1) và (2) ta có A<2
Vậy A<B
A=\(\frac{1}{2}+\frac{2}{2^2}+\frac{3}{2^3}+.........+\frac{2016}{2^{2016}}\\ 2A=1+\frac{2}{2}+\frac{3}{2^2}+........+\frac{2016}{2^{2015}}\\ 2A-A=\left(\frac{2}{2}-\frac{1}{2}\right)+\left(\frac{3}{2^2}-\frac{2}{2^2}\right)+\left(\frac{4}{2^3}-\frac{3}{2^3}\right)+.........\left(\frac{2016}{2^{2015}}-\frac{2015}{2^{2015}}\right)+\left(1-\frac{2016}{2^{2015}}\right)\\ A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+.....+\frac{1}{2^{2015}}+\left(1-\frac{2016}{2^{2015}}\right)\)
\(GọiC=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+.....+\frac{1}{2^{2015}}\\ 2C=1+\frac{1}{2}+\frac{1}{2^3}+......+\frac{1}{2^{2014}}\\ 2C-C=C=1-\frac{1}{2^{2015}}\)
Thay C vào A , ta có : A = 1 - 1/2^2015 + 1 - 1/2^2016 =2 - 1/2^2015 - 1/2^2016<2 =B->A<B
Có công thức: \(\frac{a}{b}< \frac{a+c}{b+c}\)
\(A=\frac{2016^{16}+1}{2016^{15}+1}< \frac{2016^{16}+1+2015}{2016^{15}+1+2015}=\frac{2016^{16}+2016}{2016^{15}+2016}=\frac{2016\left(2016^{15}+1\right)}{2016\left(2016^{14}+1\right)}=\frac{2016^{15}+1}{2016^{14}+1}=B\)
Vậy: \(A< B\)
A và B bằng nhau mà