Tính nhanh (trình bày cách tính):
a) 2001 x 767 + 2002 x 233
b) (m : 1 - m x 1) : (m x 2001 + m + 1 )
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tính nhanh (trình bày cách tính):
a) 2001 x 767 + 2002 x 233
b) (m : 1 - m x 1) : (m x 2001 + m + 1 )
a) 2001 x 757 + 2002 x 233
= 2001 x 757 + (2001 + 1) x 233
= 2001 x 757 + 2001 x 233 + 1 x 233
= 2001 x (757+233) + 233
= 2001 x 1000 + 233
= 2001000 + 233
= 2001233
a) 2001x757+2002x243
=2001 x 757+ (2001+1) x233
=2001 x757+2001x233+1 x233
=2001x(757+233)+233
=2001x1000 +233
=201000+233
=2001233
b)(m:1-m x1):(mx2001+m+1)
=(m-m):(mx2001+m+1)
=0:(mx2001+m+1)
=0
Học tốt
=2001*(767+233)*2002
=2001*1000*2002
=4006002000
nha! sao bạn ko thay số 2001=2002 hoặc thay 2002=2001 để cho dễ tính hơn?
chúc bạn học giỏi
2001*( 767 + 233) + 2002
=2001 * 1000 + 2002
= 2001 * 3002
= 6007002
chúc bạn học tốt
2) \(\dfrac{5}{x}+\dfrac{y}{4}=\dfrac{1}{8}\)
\(\Rightarrow\dfrac{5}{x}=\dfrac{1}{8}-\dfrac{y}{4}\)
\(\Rightarrow\dfrac{5}{x}=\dfrac{1}{8}-\dfrac{2y}{8}\)
\(\Rightarrow\dfrac{5}{x}=\dfrac{1-2y}{8}\)
\(\Rightarrow x\left(1-2y\right)=40\)
Vì \(1-2y\) luôn là số lẻ nên \(1-2y\in\left\{\pm1;\pm5\right\}\)
\(\Rightarrow y=\left\{0;1;-2;3\right\}\)
\(\Rightarrow x\in\left\{40;-40;8;-8\right\}\)
Vậy các cặp số x,y thỏa mãn là \(\left(0;40\right);\left(1;-40\right);\left(-2;8\right);\left(3;-8\right)\)
Ta có :
\(B=\dfrac{2000+2001}{2001+2002}=\dfrac{2000}{2001+2002}+\dfrac{2001}{2001+2002}\)
Mặt khác :
\(\dfrac{2000}{2001}>\dfrac{2000}{2001+2002}\)
\(\dfrac{2001}{2002}>\dfrac{2001}{2001+2002}\)
\(\Leftrightarrow A=\dfrac{2000}{2001}+\dfrac{2001}{2002}>\dfrac{2000}{2001+2002}+\dfrac{2001}{2001+2002}=\dfrac{2000+2001}{2001+2002}=B\)
\(\Leftrightarrow A>B\)
- Ta có : \(\frac{x-1}{2004}+\frac{x-2}{2003}=\frac{x-3}{2002}+\frac{x-4}{2001}\)
=> \(\frac{x-1}{2004}-1+\frac{x-2}{2003}-1=\frac{x-3}{2002}-1+\frac{x-4}{2001}-1\)
=> \(\frac{x-2005}{2004}+\frac{x-2005}{2003}=\frac{x-2005}{2002}+\frac{x-2005}{2001}\)
=> \(\frac{x-2005}{2004}+\frac{x-2005}{2003}-\frac{x-2005}{2002}-\frac{x-2005}{2001}=0\)
=> \(\left(x-2005\right)\left(\frac{1}{2004}+\frac{1}{2003}-\frac{1}{2002}-\frac{1}{2001}\right)=0\)
=> \(x-2005=0\)
=> \(x=2005\)
Vậy phương trình trên có tập nghiệm là \(S=\left\{2005\right\}\)
Sửa đề: \(\dfrac{x+1}{2000}+\dfrac{x+2}{1999}=\dfrac{x+3}{1998}+\dfrac{x+4}{1997}\)
\(\Rightarrow\left(\dfrac{x+1}{2000}+1\right)+\left(\dfrac{x+2}{1999}+1\right)=\left(\dfrac{x+3}{1998}+1\right)+\left(\dfrac{x+4}{1997}+1\right)\)
\(\Rightarrow\dfrac{x+2001}{2000}+\dfrac{x+2001}{1999}=\dfrac{x+2001}{1998}+\dfrac{x+2001}{1997}\)
\(\Rightarrow\dfrac{x+2001}{2000}+\dfrac{x+2001}{1999}-\dfrac{x+2001}{1998}-\dfrac{x+2001}{1997}=0\)
\(\Rightarrow\left(x+2001\right)\left(\dfrac{1}{2000}+\dfrac{1}{1999}-\dfrac{1}{1998}-\dfrac{1}{1997}\right)=0\)
\(\dfrac{1}{2000}+\dfrac{1}{1999}-\dfrac{1}{1998}-\dfrac{1}{1997}\ne0\Leftrightarrow x+2001=0\Leftrightarrow x=-2001\)
a ) \(\frac{2003\times14+1988+2001+2002}{2002+2002\times503+504\times2002}\)
= \(\frac{\left(2002+1\right)\times14+1988+2001\times2002}{2002\times\left(1+503+504\right)}\)
= \(\frac{2002\times14+14+1998+2001\times2002}{2002\times1008}\)
= \(\frac{2002\times14+2002+2001\times2002}{2002\times1008}\)
= \(\frac{2002\times\left(14+1+2001\right)}{2002\times1008}\)
= \(\frac{2016}{1008}\)
= 2
b ) Đặt A = 1/4 + 1/8 + 1/16 + 1/32 + 1/64 + 1/128
=> 2A = 1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64
=> 2A - A = ( 1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64 ) - ( 1/4 + 1/8 + 1/16 + 1/32 + 1/64 + 1/128 )
=> A = 1/2 - 1/128
A = 63/128
a) 2001 x 767 + 2002 x 233
= 2002 x 767 – 767 + 2002 x 233
= 2002 x (767+ 233) – 767
= 2002 x 1000 – 767
= 2002000 – 767
= 2001233
b) (m : 1 – m x 1) : (m x 2001 + m + 1)
= (m – m) : (m x 2001 + m + 1)
= 0 : (m x 2001 + m + 1)
= 0
- HT_ #lie -