K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 8 2016

a) \(\frac{n}{n+1}=\frac{n+1-1}{n+2-1}\)và  \(\frac{n+1}{n+2}\)

\(\Rightarrow\frac{n+1-1}{n+2-1}< \frac{n+1}{n+2}\)

\(\Rightarrow\frac{n}{n+1}< \frac{n+1}{n+2}\)

Vậy \(\frac{n}{n+1}< \frac{n+1}{n+2}\)

Nếu bn thấy đúng thì cho mk nha, thanks

17 tháng 8 2016

a) nn+1 =n+1−1/n+2−1 và  n+1/n+2 

⇒n+1−1/n+2−1 <n+1/n+2 

⇒n/n+1 <n+1/n+2 

Vậy n/n+1 <n+1/n+2 

11 tháng 4 2017

kb đc 0

11 tháng 4 2017

2 câu đầu tôi làm đc

6 tháng 5 2016

Không cần giải cũng biết đáp án:

Nếu A là số dương thì A^2016>A^2015

Nếu A là số âm thì A^2016 là số dương , A^2015 là số âm nên chắc chắn A^2016>A^2015

k nha

17 tháng 6 2015

để so sánh, ta xét hiệu a/b và a+n/b+n có: \(\frac{a}{b}-\frac{a+n}{b+n}=\frac{ab+an-ab-bn}{b\left(b+n\right)}=\frac{n\left(a-b\right)}{b\left(b+n\right)}\)

ta có mẫu gồm các số >0 => mẫu dương. n>0. nếu a>b => a-b>0 <=> \(\frac{n\left(a-b\right)}{b\left(b+n\right)}>0\Rightarrow\frac{a}{b}>\frac{a+n}{b+n}\). nếu a<b <=> a-b<0 => \(\frac{n\left(a-b\right)}{b\left(b+n\right)}<0\Rightarrow\frac{a}{b}<\frac{a+n}{b+n}\)

áp dụng từ đó ta có thể so sánh. 

ví dụ: 2/7 và 4/9

ta thấy 2<7 => \(\frac{2}{7}<\frac{2+2}{7+2}=\frac{4}{9}\)

cứ thế làm tiếp nha. ở 3 ví dụ này mình thấy a đều nhỏ hơn b đó. vậy là đều nhỏ hơn rồi

10 tháng 9 2017

nếu a/b<1 => a/b< a+n/ b+n

nếu a/b>1=> a/b> a+n/ b+n

còn các câu áp dụng thì tự làm nhé

23 tháng 8 2018

a) \(A=\frac{135}{135.136-1}\)             và                    \(B=\frac{136}{136.137-1}\)

   \(A=\frac{1}{136-1}=\frac{1}{135}\)                             \(B=\frac{1}{137-1}=\frac{1}{136}\)

Vì \(\frac{1}{136}\)\(\frac{1}{135}\)nên A > B.

23 tháng 8 2018

a, A = \(\frac{136-1}{\left(136-1\right)136-1}\) = \(\frac{136-1}{136^2-136-1}\)                 B=\(\frac{136}{136\left(136+1\right)-1}\)=\(\frac{136}{136^2+136-1}\)

x=136,  A-B =\(\frac{x-1}{x^2-x-1}\)-\(\frac{x}{x^2+x-1}\) =\(\frac{x^3+x^2-x-x^2-x+1-x^3+x^2+x}{\left(x^2-1\right)^2-x^2}\)=\(\frac{x^2-x+2}{\left(x^2-1\right)^2-x^2}\)<0

=> A<B

b,A = \(\frac{456-333}{456}\)= 1-333/456       B=\(\frac{789-333}{789}\)= 1-333/789

=> A>B

c, 3/14<3/13<3/12<3/11<3/10 <2/5

M = 3/10+3/11+3/12+3/13+3/14 < 2/5 x5 = 2= N