Tìm GTLN của
M=x(1-2x) với 0<x<\(\frac{1}{2}\)
N=x(2-7x) với 0<x<\(\frac{2}{7}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì \(0\le x\le\frac{1}{2}\Rightarrow0\le2x\le1\Rightarrow-1\le-2x\le0\)
\(1-1\le1-2x\le1\Rightarrow0\le x\left(1-2x\right)\le\frac{1}{2}\)
\(0\le M\le\frac{1}{2}\Rightarrow M_{max}=\frac{1}{2}\)
d. Áp dụng BĐT Caushy Schwartz ta có:
\(x+y+\dfrac{1}{x}+\dfrac{1}{y}\le x+y+\dfrac{\left(1+1\right)^2}{x+y}=x+y+\dfrac{4}{x+y}\le1+\dfrac{4}{1}=5\)
-Dấu bằng xảy ra \(\Leftrightarrow x=y=\dfrac{1}{2}\)
2x-x^2=-x^2+2x-1+1=-(x^2-2x+1)+1=-(x-1)^2+1\(\le\)1 với mọi x(vì -(x-1)^2\(\le0\) với mọi x). Dấu "=" xảy ra khi -(x-1)^2=0 \(\Leftrightarrow x-1=0\Leftrightarrow x=1\)
Vậy biểu thức có giá trị nhỏ nhất là 1 tại x=1
\(P\left(x\right)=2x-x^2\)
\(=-\left(x^2-2x+1-1\right)\)
\(=-\left(\left(x-1\right)^2-1\right)\)
\(=1-\left(x-1\right)^2\le1\)
GTNL của \(P\left(x\right)=1\Leftrightarrow x-1=0\Rightarrow x=1\)
a: \(M=\dfrac{x^2+2x+1-x^2-3}{2\left(x-1\right)\left(x+1\right)}=\dfrac{2\left(x-1\right)}{2\left(x-1\right)\left(x+1\right)}=\dfrac{1}{x+1}\)
b: x thuộc {0;0,5}
=>x=0 hoặc x=0,5
Khi x=0 thì M=1/0+1=1
Khi x=0,5 thì M=1/0,5+1=1/1,5=2/3
=>M min=2/3 và M max=1
1 ) \(B=\dfrac{x^2-2x+2011}{x^2}=1-\dfrac{2}{x}+\dfrac{2011}{x^2}\)
Đặt \(\dfrac{1}{x}=a\) , khi đó :
\(B=1-2a+2011a^2\)
\(=2011\left(a^2-2a.\dfrac{1}{2011}+\dfrac{1}{2011^2}\right)+\dfrac{2010}{2011}\)
\(=2011\left(a-\dfrac{1}{2011}\right)^2+\dfrac{2010}{2011}\ge\dfrac{2010}{2011}\)
Dấu " = " xảy ra \(\Leftrightarrow a=\dfrac{1}{2011}\Leftrightarrow x=2011\)
2 ) ĐKXĐ : \(x\ne-1\)\(C=\dfrac{3\left(x+1\right)}{x^3+x^2+x+1}=\dfrac{3\left(x+1\right)}{\left(x^2+1\right)\left(x+1\right)}=\dfrac{3}{x^2+1}\le\dfrac{3}{1}=3\)
Dấu " = " xảy ra \(\Leftrightarrow x=0\)