K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 3 2018

Câu hỏi của Thư Nguyễn Nguyễn - Toán lớp 7 | Học trực tuyến

1 tháng 3 2018

b, Gọi biểu thức đề ra là B

=> Theo bđt cô si ta có : \(B\ge3\sqrt[3]{\left(x^2+\frac{1}{y^2}\right)\left(y^2+\frac{1}{z^2}\right)\left(z^2+\frac{1}{x^2}\right)}\)

=> \(B\ge3\sqrt[3]{2\cdot\frac{x}{y}\cdot2\cdot\frac{y}{z}\cdot2\cdot\frac{z}{x}}=3\sqrt[3]{8}=6\) 

( Chỗ này là thay \(x^2+\frac{1}{y^2}\ge2\sqrt{\frac{x^2}{y^2}}=2\cdot\frac{x}{y}\) và 2 cái kia tương tự vào )

=> Min B=6

1 tháng 3 2018

Theo bđt cô si thì ta có : \(\sqrt{\left(x+y\right)\cdot1}\le\frac{x+y+1}{2}\)

\(\sqrt{\left(z+x\right)\cdot1}\le\frac{z+x+1}{2}\)

\(\sqrt{\left(y+z\right)\cdot1}\le\frac{y+z+1}{2}\)

=> Cộng vế theo vế ta được : \(A\le\frac{2\left(x+y+z\right)+3}{2}=\frac{5}{2}\)

Dấu = xảy ra khi : x+y+z=1 và x+y=1 và y+z=1 và x+z=1

=> \(x=y=z=\frac{1}{3}\)

Vậy ...

8 tháng 9 2018

Với x,y,z>0, áp dụng BĐT Bunhiacopxki

\(\left[\left(x+y\right)+\left(y+z\right)+\left(z+x\right)\right]\left(1+1+1\right)\ge\left(\sqrt{x+y}+\sqrt{y+z}+\sqrt{z+x}\right)^2\) 

\(\Leftrightarrow\left(x+y+z\right)2.3\ge\left(\sqrt{x+y}+\sqrt{y+z}+\sqrt{z+x}\right)^2\) 

\(\Leftrightarrow6\ge\left(\sqrt{x+y}+\sqrt{y+z}+\sqrt{z+x}\right)^2\) 

\(\Leftrightarrow\sqrt{x+y}+\sqrt{y+z}+\sqrt{z+x}\le\sqrt{6}\) (đpcm) 

Dấu "=" khi \(x=y=z=\frac{1}{3}\)

16 tháng 4 2020

Áp dụng bất đẳng thức Cô - si cho các cặp số không âm, ta có:

\(\sqrt{\frac{2}{3}\left(x+y\right)}\le\frac{\frac{2}{3}+x+y}{2}=\frac{2+3x+3y}{6}\)

\(\sqrt{\frac{2}{3}\left(y+z\right)}\le\frac{\frac{2}{3}+y+z}{2}=\frac{2+3y+3z}{6}\)

\(\sqrt{\frac{2}{3}\left(z+x\right)}\le\frac{\frac{2}{3}+z+x}{2}=\frac{2+3z+3x}{6}\)

Cộng từng vế của các bất đẳng thức trên \(\sqrt{\frac{2}{3}}\text{∑}\sqrt{x+y}\le2\)

\(\Rightarrow\text{∑}\sqrt{x+y}\le\sqrt{6}\)

Vậy \(\sqrt{x+y}+\sqrt{y+z}+\sqrt{z+x}\le\sqrt{6}\)

Đẳng thức xảy ra khi \(x=y=z=\frac{1}{3}\)

10 tháng 10 2016

Áp dụng Bđt \(\left(a+b+c\right)^2\le3\left(a^2+b^2+c^2\right)\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)

Ta có:

\(A^2\le6\left(x+y+z\right)=6\)

\(\Leftrightarrow A\le\sqrt{6}\)(Đpcm)

20 tháng 8 2017

1933 -109

AH
Akai Haruma
Giáo viên
15 tháng 2 2020

Lời giải:
Áp dụng BĐT Bunhiacopxky:

$(\sqrt{x}+\sqrt{y}+\sqrt{z})^2\leq (6x+3y+2z)(\frac{1}{6}+\frac{1}{3}+\frac{1}{2})$

Mà: $6x+3y+2z=3x+(x+y)+2(x+y+z)\leq 3.1+5+2.14=36$

Do đó: $(\sqrt{x}+\sqrt{y}+\sqrt{z})^2\leq 36.(\frac{1}{6}+\frac{1}{3}+\frac{1}{2})=36$

$\Rightarrow \sqrt{x}+\sqrt{y}+\sqrt{z}\leq 6$ (đpcm)

Dấu "=" xảy ra khi $x=1; y=2; z=3$

AH
Akai Haruma
Giáo viên
2 tháng 2 2020

Lời giải:
Áp dụng BĐT Bunhiacopxky:

$(\sqrt{x}+\sqrt{y}+\sqrt{z})^2\leq (6x+3y+2z)(\frac{1}{6}+\frac{1}{3}+\frac{1}{2})$

Mà: $6x+3y+2z=3x+(x+y)+2(x+y+z)\leq 3.1+5+2.14=36$

Do đó: $(\sqrt{x}+\sqrt{y}+\sqrt{z})^2\leq 36.(\frac{1}{6}+\frac{1}{3}+\frac{1}{2})=36$

$\Rightarrow \sqrt{x}+\sqrt{y}+\sqrt{z}\leq 6$ (đpcm)

Dấu "=" xảy ra khi $x=1; y=2; z=3$

24 tháng 10 2016

Ta có \(\sqrt{1+x^2}+\sqrt{2x}\le\sqrt{2}\left(x+1\right)\)

\(\sqrt{1+y^2}+\sqrt{2y}\le\sqrt{2}\left(y+1\right)\)

\(\sqrt{1+z^2}+\sqrt{2z}\le\sqrt{2}\left(z+1\right)\)

\(\Rightarrow\sqrt{1+x^2}+\sqrt{1+y^2}+\sqrt{1+z^2}+\sqrt{2x}+\sqrt{2y}+\sqrt{2z}\le\sqrt{2}\left(x+y+z+3\right)\le6\sqrt{2}\)

Ta lại có \(\sqrt{x}+\sqrt{y}+\sqrt{z}\le\sqrt{3\left(x+y+z\right)}\le3\)

Theo đề bài ta có

\(\sqrt{1+x^2}+\sqrt{1+y^2}+\sqrt{1+z^2}+3\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)\)

\(\le6\sqrt{2}+\left(3-\sqrt{2}\right)\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)\le3\sqrt{2}+9\)

Dấu = xảy ra khi x = y = z = 1

25 tháng 8 2017

bạn sử dụng bất đẳng thức : 3 ( a\(^2\)+ b\(^2\)+ c\(^2\)\(\le\)( a + b + c )\(^2\)

rồi thay : a = x + y ; b = y + z ; c = z + x là được

25 tháng 8 2017

Áp dụng BĐT Cauchy-Schwarz ta có:

\(VT^2=\left(\sqrt{x+y}+\sqrt{y+z}+\sqrt{x+z}\right)^2\)

\(\le\left(1+1+1\right)\cdot2\cdot\left(x+y+z\right)\)

\(=3\cdot2\cdot1=6=VP^2\)

Xảy ra khi \(x=y=z=\frac{1}{3}\)

NV
8 tháng 1 2023

Đặt vế trái là P, ta có:

\(P\le\sqrt{3\left(\dfrac{x}{z+3x}+\dfrac{y}{x+3y}+\dfrac{z}{y+3z}\right)}\)

Nên ta chỉ cần chứng mình: \(\sqrt{3\left(\dfrac{x}{z+3x}+\dfrac{y}{x+3y}+\dfrac{z}{y+3z}\right)}\le\dfrac{3}{2}\)

\(\Leftrightarrow\dfrac{x}{z+3x}+\dfrac{y}{x+3y}+\dfrac{z}{y+3z}\le\dfrac{3}{4}\)

\(\Leftrightarrow\dfrac{3x}{z+3x}-1+\dfrac{3y}{x+3y}-\dfrac{3z}{y+3z}-1\le\dfrac{9}{4}-3\)

\(\Leftrightarrow\dfrac{z}{z+3x}+\dfrac{x}{x+3y}+\dfrac{y}{y+3z}\ge\dfrac{3}{4}\)

BĐT trên đúng do:

\(\dfrac{z}{z+3x}+\dfrac{x}{x+3y}+\dfrac{y}{y+3z}=\dfrac{z^2}{z^2+3zx}+\dfrac{x^2}{x^2+3xy}+\dfrac{y^2}{y^2+3yz}\)

\(\ge\dfrac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2+xy+yz+zx}\ge\dfrac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2+\dfrac{1}{3}\left(x+y+z\right)^2}=\dfrac{3}{4}\)