K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 4 2022

Cứu mình với

 

24 tháng 6 2021

undefined

undefined

 

1 tháng 5 2017

HINH VE DAU?

1 tháng 5 2017

a, xet tam giac ADB va tam giac EBD co:

goc ABD = goc EBD (vi BD la tia phan giac cua goc B)

BD chung

goc BAD = goc BED (=90 do)

suy ra tam giac ADB = tam giac EBD 

b,vi tam giac ABC la tam giac vuong nen theo dinh ly pi-ta-go ta co:

BC^2 = AB ^2 + AC^2

     =   6^2 + 8^2

     =  36+64

     =100 suy ra BC = 10

ta co tam giac ABC = tam giac EBD nen AB = BE = 6 

ta co EC = BC - BE

             = 10 - 6

             =4

c,d ban tu lm

      

16 tháng 5 2018

a) Xét tam giác ABD vuông tại A và tam giác EBD vuông tại E

có: BD là cạnh chung

góc ABD = góc EBD (gt)

\(\Rightarrow\Delta ABD=\Delta EBD\left(ch-gn\right)\)

b) ta có: \(\Delta ABD=\Delta EBD\left(pa\right)\)

=> AB = EB = 6 cm ( 2 cạnh tương ứng)

=> EB = 6 cm

Xét tam giác ABC vuông tại A
có: \(AB^2+AC^2=BC^2\left(py-ta-go\right)\)

thay số: \(6^2+8^2=BC^2\)

          \(\Rightarrow BC^2=100\)

              \(\Rightarrow BC=10cm\)

mà \(E\in BC\)

=> EB + EC = BC

thay số: 6 + EC = 10

                  EC = 10 - 6

               => EC = 4 cm

c) ta có: \(\Delta ABD=\Delta EBD\left(pa\right)\)

=> AD =  ED ( 2 cạnh tương ứng)

    AB = EB ( 2 cạnh tương ứng) (1)

Xét tam giác ADI vuông tại A và tam giác EDC vuông tại E

có: AD = ED ( chứng minh trên)

góc ADI = góc EDC ( đối đỉnh)

\(\Rightarrow\Delta ADI=\Delta EDC\left(cgv-gn\right)\)

=> AI = EC ( 2 cạnh tương ứng)(2)

Từ (1);(2) => AB + AI = EB + EC

               => BI = BC

              => tam giác BIC cân tại B ( định lí tam giác cân)

d) ta có: \(\Delta ABD=\Delta EBD\left(pa\right)\)

=> AD = ED ( 2 cạnh tương ứng) (1)

Xét tam giác EDC vuông tại E

có: ED < DC ( định lí cạnh góc vuông, cạnh huyền) (2)

Từ (1);(2) => AD <DC

mk ko bít kẻ hình trên này!

6 tháng 8 2020

A B C D E F

A) XÉT \(\Delta ABC\)VUÔNG TẠI A

\(\Rightarrow BC^2=AB^2+AC^2\left(PYTAGO\right)\)

THAY \(10^2=6^2+AC^2\)

         \(100=36+AC^2\)

\(\Rightarrow AC^2=100-36\)

\(\Rightarrow AC^2=64\)

\(\Rightarrow AC=\sqrt{64}=8\left(cm\right)\)

ta có \(AD+DC=AC\)

\(\Leftrightarrow3+DC=8\)

\(\Leftrightarrow DC=8-3=5\left(cm\right)\)

B) XÉT \(\Delta ABD\)VÀ \(\Delta EBD\)

\(\widehat{BAD}=\widehat{BED}=90^o\)

\(\widehat{ABD}=\widehat{EBD}\left(gt\right)\)

BD LÀ CẠNH CHUNG 

=>\(\Delta ABD\)=\(\Delta EBD\)( CH-GN)

\(\Rightarrow BA=BE\)(HAI CẠNH TƯƠNG ỨNG )

=> \(\Delta BAE\)LÀ TAM GIÁC CÂN TẠI B

c)  XÉT \(\Delta ADF\)VUÔNG TẠI A

\(\Rightarrow DF>AD\left(1\right)\)( CẠNH HUYỀN LỚN NHẤT )

VÌ \(\Delta ABD\)=\(\Delta EBD\)(CMT)

=> \(AD=ED\left(2\right)\)(HAI CẠNH TƯƠNG ỨNG )

TỪ (1) VÀ (2) 

\(\Rightarrow DF>ED\)

28 tháng 4 2018

a) Xét tam giác ABD vuông tại A và tam giác EBD vuông tại E

có: góc ABD = góc EBD (gt)

BD là cạnh chung

\(\Rightarrow\Delta ABD=\Delta EBD\left(ch-gn\right)\)

b) Xét tam giác ABC vuông tại A

có: \(AB^2+AC^2=BC^2\) ( py - ta - go)

thay số: \(6^2+8^2=BC^2\)

\(\Rightarrow BC^2=100\)

\(\Rightarrow BC=10cm\)

ta có: \(\Delta ABD=\Delta EBD\left(pa\right)\)

=> AB = EB = 6cm ( 2 cạnh tương ứng)

=> EB = 6cm

mà EB + EC = BC ( E thuộc BC )

thay sô: 6 cm + EC = 10 cm

                         EC = 10 cm - 6 cm

                        EC = 4 cm

c) ta có: \(\Delta ABD=\Delta EBD\left(pa\right)\)

=> AD = ED ( 2 cạnh tương ứng)

Xét tam giác ADI vuông tại A và tam giác EDC vuông tại E

có: góc ADI = góc EDC ( đối đỉnh)

  AD = ED ( cmt)

\(\Rightarrow\Delta ADI=\Delta EDC\left(cgv-gn\right)\)

=> AI = EC ( 2 cạnh tương ứng)

Mà AB = BE ( tam giác ABD = tam giác EBD)

=> AI + AB = EC + BE

=> IB = CB

=> tam giác BIC cân tại B ( định lí tam giác cân)

d) ta có: AD = ED ( tam giác ABD = tam giác EBD) (1)

Xét tam giác EDC vuông tại E

có: ED < DC ( định lí cạnh huyền, góc nhọn) (2)

Từ (1); (2) => AD < DC

xin lỗi bn nha! mk ko bít kẻ hình trên này, nên mk ko kẻ cho bn đc đâu

20 tháng 2 2023

a) Xét tam giác ABD vuông tại A và tam giác EBD vuông tại E

có: góc ABD = góc EBD (gt)

BD là cạnh chung

⇒ΔABD=ΔEBD(ch−gn)⇒Δ���=Δ���(�ℎ−��)

b) Xét tam giác ABC vuông tại A

có: AB2+AC2=BC2��2+��2=��2 ( py - ta - go)

thay số: 62+82=BC262+82=��2

⇒BC2=100⇒��2=100

⇒BC=10cm⇒��=10��

ta có: ΔABD=ΔEBD(pa)Δ���=Δ���(��)

=> AB = EB = 6cm ( 2 cạnh tương ứng)

=> EB = 6cm

mà EB + EC = BC ( E thuộc BC )

thay sô: 6 cm + EC = 10 cm

                         EC = 10 cm - 6 cm

                        EC = 4 cm

c) ta có: ΔABD=ΔEBD(pa)Δ���=Δ���(��)

=> AD = ED ( 2 cạnh tương ứng)

Xét tam giác ADI vuông tại A và tam giác EDC vuông tại E

có: góc ADI = góc EDC ( đối đỉnh)

  AD = ED ( cmt)

⇒ΔADI=ΔEDC(cgv−gn)⇒Δ���=Δ���(���−��)

=> AI = EC ( 2 cạnh tương ứng)

Mà AB = BE ( tam giác ABD = tam giác EBD)

=> AI + AB = EC + BE

=> IB = CB

=> tam giác BIC cân tại B ( định lí tam giác cân)

d) ta có: AD = ED ( tam giác ABD = tam giác EBD) (a)

Xét tam giác EDC vuông tại E

có: ED < DC ( định lí cạnh huyền, góc nhọn) (b)

Từ (a); (b) => AD < DC.

cre baji

ngaingung

a: BC=căn 4^2+3^2=5cm

AC<AB<BC

=>góc B<góc C<góc A

b: Xét ΔBAD vuông tại A và ΔBED vuông tại E có

BD chung

góc ABD=góc EBD

=>ΔBAD=ΔBED

c: Xét ΔBEF vuông tại E và ΔBAC vuông tại A có

góc EBF chung

=>ΔBEF đồng dạng với ΔBAC

=>BF=BC

a: AB<AC<BC

=>góc C<gócB<góc A

b: Xét ΔABD và ΔEBD có

BA=BE

góc ABD=góc EBD

BD chung

=>ΔBAD=ΔBED
c,d: ΔBAD=ΔBED
=>góc ADB=góc EDB và góc BAD=góc BED=90 độ

=>DB là phân giác của góc ADE và DE vuông góc BC

a: Xet ΔBAD vuông tại A và ΔBED vuông tại E có

BD chung

góc ABD=góc EBD

=>ΔBAD=ΔBED

=>BA=EB

b: AB<AC

=>góc C<góc B

=>góc C<45 độ

=>gócEDC>45 độ

=>góc C<góc EDC

=>ED<EC

=>DA<AM<DM

 

23 tháng 4 2021

undefined

25 tháng 4 2021

Mình vẫn chưa hiểu cái câu c á bạn. Giải thích giúp mình được không?