K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 4 2022

Bằng 6,15 m3 nha

1 tháng 4 2022

6,015 m3 nha 

17 tháng 2 2021

Do M là điểm chính giữa của cung AB \(\Rightarrow MA=MB\)  (1)

Ta có \(\Lambda MAN=\Lambda MAB=\dfrac{1}{2}sđcungMB\) (\(\Lambda\) kí hiệu góc)

\(\Lambda MBC=\dfrac{1}{2}sđcungMB\) \(\Rightarrow\Lambda MAN=\Lambda MBC\)(2)

\(\Lambda AMN\) là góc chắn đường kính AB \(\Rightarrow\Lambda AMB=90^0\Rightarrow\Lambda AMN+\Lambda NMB=90^0\) 

\(\Lambda NMC=90^0\Rightarrow\Lambda NMB+\Lambda BMC=90^0\) \(\Rightarrow\Lambda AMN=\Lambda BMC\)(3)

 

Từ (1) ,(2) và (3) \(\Rightarrow\Delta AMN=\Delta BMC\left(g.c.g\right)\)

5 tháng 1 2022

Bạn có thể hướng dẫn giúp mình ko? Mình cảm ơn nhiều

NV
9 tháng 1 2022

\(A\cap B=\varnothing\Leftrightarrow2m-7\le13m+1\)

\(\Leftrightarrow11m\ge-8\Rightarrow m\ge-\dfrac{8}{11}\)

\(\Rightarrow\) Số nguyên m nhỏ nhất là \(m=0\)

NV
1 tháng 11 2021

\(y'=\dfrac{\left(-2x+2\right)\left(x-3\right)-\left(-x^2+2x+c\right)}{\left(x-3\right)^2}=\dfrac{-x^2+6x-6-c}{\left(x-3\right)^2}\)

\(\Rightarrow\) Cực đại và cực tiểu của hàm là nghiệm của: \(-x^2+6x-6-c=0\) (1)

\(\Delta'=9-\left(6+c\right)>0\Rightarrow c< 3\)

Gọi \(x_1;x_2\) là 2 nghiệm của (1) \(\Rightarrow\left\{{}\begin{matrix}-x_1^2+6x_1-6=c\\-x_2^2+6x_2-6=c\end{matrix}\right.\)

\(\Rightarrow m-M=\dfrac{-x_1^2+2x_1+c}{x_1-3}-\dfrac{-x_2^2+2x_2+c}{x_2-3}=4\)

\(\Leftrightarrow\dfrac{-2x_1^2+8x_1-6}{x_1-3}-\dfrac{-2x_2^2+8x_2-6}{x_2-3}=4\)

\(\Leftrightarrow2\left(1-x_1\right)-2\left(1-x_2\right)=4\)

\(\Leftrightarrow x_2-x_1=2\)

Kết hợp với Viet: \(\left\{{}\begin{matrix}x_2-x_1=2\\x_1+x_2=6\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_1=2\\x_2=4\end{matrix}\right.\)

\(\Rightarrow c=2\)

Có 1 giá trị nguyên

12 tháng 3 2023

loading...

loading...

Câu 1: 

const fi='dulieu.dat';

fo='thaythe.out';

var f1,f2:text;

a:array[1..100]of string;

n,d,i,vt:integer;

begin

assign(f1,fi); reset(f1);

assign(f2,fo); rewrite(f2);

n:=0;

while not eof(f1) do 

  begin

n:=n+1;

readln(f1,a[n]);

end;

for i:=1 to n do 

  begin

d:=length(a[i]);

vt:=pos('anh',a[i]);

while vt<>0 do 

  begin

delete(a[i],vt,3);

insert('em',a[i],vt);

vt:=pos('anh',a[i]);

end;

end;

for i:=1 to n do 

  writeln(f2,a[i]);

close(f1);

close(f2);

end.

Câu 2: 

uses crt;

const fi='mang.inp';

fo='sapxep.out';

var f1,f2:text;

a:array[1..100]of integer;

i,n,tam,j:integer;

begin

clrscr;

assign(f1,fi); rewrite(f1);

assign(f2,fo); rewrite(f2);

write('Nhap n='); readln(n);

for i:=1 to n do 

  begin

write('A[',i,']='); readln(a[i]);

end;

for i:=1 to n do 

  write(f1,a[i]:4);

for i:=1 to n-1 do 

  for j:=i+1 to n do 

if a[i]>a[j] then

begin

tam:=a[i];

a[i]:=a[j];

a[j]:=tam;

end;

for i:=1 to n do 

  write(f2,a[i]:4);

close(f1);

close(f2);

end.

16 tháng 10 2021

a) bạn tự vẽ đi nhé (cách vẽ RntRbntAmpe)

b)

i)khi ampe kế chỉ 0.3 (A) 

Ir=Ib=Ia=0.3(A)

⇒Rtđ =\(\dfrac{U}{Ia}\)=\(\dfrac{12}{0.3}\)=40Ω

 khi ampe kế chỉ 0.8

Ir=Ib=Ia=0.8A

=>Rtđ =\(\dfrac{12}{0.8}\)=15Ω

ii) vì R tỉ lệ nghịch với I

=>để Rb max<=>I=0.3A

=>Ir=Ib =0.3 A

có \(\dfrac{Rr}{Rb}=\dfrac{Ib}{Ir}=\dfrac{0.3}{0.3}=1\)

mà từ i) ta có Rtđ =Rr+Rb =40

=> Rr = Rbmax = \(\dfrac{40}{2}\)=20Ω

28 tháng 10 2021

a. \(R=R1+R2+R3=5+6+15=26\Omega\)

b. \(I=I1=I2=I3=1A\left(R1ntR2ntR3\right)\)

\(\left\{{}\begin{matrix}U=IR=1.26=26\left(V\right)\\U1=I1.R1=1.5=5\left(V\right)\\U2=I2.R2=1.6=6\left(V\right)\\U3=I3.R3=1.15=15\left(V\right)\end{matrix}\right.\)

c. \(R'=U:I'=26:0,5=52\Omega\)

\(\Rightarrow R_x=R'-\left(R1+R2\right)=52-\left(5+6\right)=41\Omega\)