K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 8 2019

mk chỉ giải tóm tắt thôi có gì ko hiểu bạn nhắn tin cho mk cùng  

https://olm.vn/hoi-dap/detail/56257383814.html

 phần c mk cũng chưa làm đc

a, ta có Cos C=\(\frac{CF}{EC}\)

C/m tam giác CEF đồng dạng với tam giác CBA (g-g)

=> \(\frac{CF}{EC}=\frac{AC}{BC}\)

=> tam giác AFC và tam giác BEC dồng dạng (c-g-c)

=>\(\frac{CF}{EC}=\frac{AF}{AE}\)

=> Cos C =\(\frac{AF}{BE}\)=> BE.Cos C= BE.\(\frac{AF}{BE}\)=AF(đpcm)

b,

bn áp dụng các hệ thức về góc và cạnh trong tam giác vuông

mỗi cạnh góc vuông bằng cạnh huyền.Sin góc đối  để tính AB,AC trong tam giác ABC vuông

=> AE=EC=AC:2=...(bn tu tinh nha)

xét tam giác CEF vuông tại C

lại áp dụng công thức trên để tính È

=> FC=....(Theo Pi-ta-go)

=>BF=BC-FC

=>BF=....

=>bn tính SABE VÀ SBEF sau đó cộng lại là ra SABFE

  • NẾU CÓ BN NÀO GIẢI ĐƯỢC PHẦN C THÌ GIÚP MK VS
  • *****CHÚC BẠN HỌC GIỎI*****
3 tháng 8 2019

mk chỉ dải tóm tắt thôi có gì ko hiểu bạn nhắn tin cho mk cùng  

https://olm.vn/hoi-dap/detail/189938041517.html

ý 2 phần b mk cũng chưa làm đc

a, ta có Cos C=\(\frac{CF}{EC}\)

C/m tam giác CEF đồng dạng với tam giác CBA (g-g)

=> \(\frac{CF}{EC}=\frac{AC}{BC}\)

=> tam giác AFC và tam giác BEC dồng dạng (c-g-c)

=>\(\frac{CF}{EC}=\frac{AF}{AE}\)

=> Cos C =\(\frac{AF}{BE}\)=> BE.Cos C= BE.\(\frac{AF}{BE}\)=AF(đpcm)

b,

bn áp dụng các hệ thức về góc và cạnh trong tam giác vuông

mỗi cạnh góc vuông bằng cạnh huyền.Sin góc đối  để tính AB,AC trong tam giác ABC vuông

=> AE=EC=AC:2=...(bn tu tinh nha)

xét tam giác CEF vuông tại C

lại áp dụng công thức trên để tính È

=> FC=....(Theo Pi-ta-go)

=>BF=BC-FC

=>BF=....

=>bn tính SABE VÀ SBEF sau đó cộng lại là ra SABFE

  • NẾU CÓ BN NÀO GIẢI ĐƯỢC CÂU B PHẦN 2 THÌ GIÚP MK VS
  • *****CHÚC BẠN HỌC GIỎI*****
3 tháng 8 2019

mk chỉ giải tóm tắt thôi có gì ko hiểu bạn nhắn tin cho mk cùng  

https://olm.vn/hoi-dap/detail/83059449265.html

ý 2 phần b mk cũng chưa làm đc

a, ta có Cos C=\(\frac{CF}{EC}\)

C/m tam giác CEF đồng dạng với tam giác CBA (g-g)

=> \(\frac{CF}{EC}=\frac{AC}{BC}\)

=> tam giác AFC và tam giác BEC dồng dạng (c-g-c)

=>\(\frac{CF}{EC}=\frac{AF}{AE}\)

=> Cos C =\(\frac{AF}{BE}\)=> BE.Cos C= BE.\(\frac{AF}{BE}\)=AF(đpcm)

b,

bn áp dụng các hệ thức về góc và cạnh trong tam giác vuông

mỗi cạnh góc vuông bằng cạnh huyền.Sin góc đối  để tính AB,AC trong tam giác ABC vuông

=> AE=EC=AC:2=...(bn tu tinh nha)

xét tam giác CEF vuông tại C

lại áp dụng công thức trên để tính È

=> FC=....(Theo Pi-ta-go)

=>BF=BC-FC

=>BF=....

=>bn tính SABE VÀ SBEF sau đó cộng lại là ra SABFE

  • NẾU CÓ BN NÀO GIẢI ĐƯỢC Ý 2 PHẦN B THÌ GIÚP MK VS
  • *****CHÚC BẠN HỌC GIỎI*****
Bài 1: Cho tam giác ABC, kẻ AH vuông góc với BC, BH=9cm, HC=16cm, tgC=0,75.Trên AH lấy điểm O sao cho OH=2cma) CM: ABC là tam giác vuôngb) Trên cạnh AB lấy điểm M, trên OB lấy điểm P và trên OC lấy điểm N sao cho AM/AB=OP/OB=ON/OC=2/5. Tính độ dài các cạnh và số đo các góc của tam giác MPNBài 2:Cho tam giác vuông ABC( A=90 độ) Kẻ đường thẳng song song với cạnh BC cắt ccs cạnh AB,AC tại M,N, MB=12cm, NC=9cm, trung...
Đọc tiếp

Bài 1: Cho tam giác ABC, kẻ AH vuông góc với BC, BH=9cm, HC=16cm, tgC=0,75.Trên AH lấy điểm O sao cho OH=2cm

a) CM: ABC là tam giác vuông

b) Trên cạnh AB lấy điểm M, trên OB lấy điểm P và trên OC lấy điểm N sao cho AM/AB=OP/OB=ON/OC=2/5. Tính độ dài các cạnh và số đo các góc của tam giác MPN

Bài 2:Cho tam giác vuông ABC( A=90 độ) Kẻ đường thẳng song song với cạnh BC cắt ccs cạnh AB,AC tại M,N, MB=12cm, NC=9cm, trung điểm của MN và BC là E và F

a) CM: 3 điểm A,E,F thẳng hàng

b) Trung điểm BN là G. Tính độ dài các cạnh và số đo các góc của tam giác EFG

c) CM: Tam giác EFG đồng dạng tam giác ABC

Bài 3: Cho tam giác ABC, A= 90 độ. Từ trung điểm E của cạnh AC kẻ EF vuông góc với BC. Nối AF và BE

a) CM; AF= BE.cos C

b) Biết BC=10cm, sinC=0,6. Tính diện tích tứ giác ABFE

c) AF và BE cắt nhau tại O. Tính SinAOB

Bạn nào giúp mk với ạ huhu cảm ơn nhiều nhiều

1
11 tháng 7 2019

Câu hỏi của Pham Van Hung - Toán lớp 9 - Học toán với OnlineMath

Bạn tham khảo câu 2 tai link này nhé!

 Cho tam giác ABC có AB=AC=5cm, BC=8cm. Kẻ AH vuông góc với BC (H thuộc BC)a, Chứng minh: HB=HC và BAH=CAHb, Tính độ dài AHc, Kẻ HD vuông góc với AB (D thuộc AB) , kẻ HE vuông góc với AC (E thuộc AC). Chứng minh tam giác HDE là tam giác cânBài 3: Cho tam giác ABC cân tại A. Trên tia đối của BC lấy điểm M, trên tia đối của CB lấy N sao cho BM=CNa, Chứng minh: tam giác ABM = tam giác ACNb, Kẻ BH vuông góc với AM, CK vuông...
Đọc tiếp

 Cho tam giác ABC có AB=AC=5cm, BC=8cm. Kẻ AH vuông góc với BC (H thuộc BC)

a, Chứng minh: HB=HC và BAH=CAH

b, Tính độ dài AH

c, Kẻ HD vuông góc với AB (D thuộc AB) , kẻ HE vuông góc với AC (E thuộc AC). Chứng minh tam giác HDE là tam giác cân

Bài 3: Cho tam giác ABC cân tại A. Trên tia đối của BC lấy điểm M, trên tia đối của CB lấy N sao cho BM=CN

a, Chứng minh: tam giác ABM = tam giác ACN

b, Kẻ BH vuông góc với AM, CK vuông góc với AN( H thuộc AM,K thuộc AN). Chứng minh : AH=AK

c, Gọi O là giao điểm của HB và KC. Tam giác OBC là tam giác gì? Vì sao?

Bài 4: Cho tam giác ABC, kẻ BE vuông góc với AC và CF vuông góc với AB. Biết BE=CF=8 cm. Độ dài các đoạn thẳng BF và BC tỉ lệ với 3 và 5.

a, Chứng minh tam giác ABC là tam giác cân

b, Tính độ dài cạnh đáy BC

c, BE và CF cắt nhau tại O. Nối OA và EF. Chứng minh đường thẳng OA là trung trực của đoạn thẳng EF

Bài 5 : Cho tam giác ABC vuông tại A, BD là tia phân giác của góc ABC (D thuộc AC). Từ D kẻ DE vuông góc với BC tại E. Gọi I là giao điểm của AE và BD. Chứng minh:

a, Tam giác ADB= tam giác EDB

b, BD là đường trung trực của AE

c, Tam giác EDC vuông cân

d, Lấy F thuộc tia đối của tia AB sao cho AF=EC.Chứng minh 3 điểm E, D, F thẳng hàng

Bài 6: Cho tam giác MNP cân tại M. Trên cạnh MN lấy điểm E, trên cạnh MP lấy điểm F sao cho ME=MF. Gọi S là giao điểm của NF và PE. Chứng minh

a, Tam giác MNF= tam giác MPE

b, Tam giác NSE= tam giác PSE

c, EF // NP

d, Lấy K là trung điểm của NP. Chứng minh ba điểm M, S, K thẳng hàng

Bài 7: Cho tam giác ABC vuông tại A. Trên BC lấy E sao cho BE=AB. Qua E kẻ đường thẳng vuông góc với BC cắt AC tại D

a, Chứng minh AD=AE và góc ABD= góc EBD

b, Lấy điểm F thuộc tia đối của tia AB sao cho AF=EC. Chứng minh tam giác DFC cân

c, Gọi O là giao điểm của BD và AE. Chứng minh BD là đường trung trực của AE

d, Chứng minh 3 điểm F, D,E thẳng hàng

Mình đang cần gấp

1

Bài 3: 

a: Xét ΔABM và ΔACN có

AB=AC
góc ABM=góc ACN

BM=CN

Do đó: ΔABM=ΔACN

Suy ra: AM=AN

b: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có

AB=AC

góc BAH=góc CAK

Do đó; ΔAHB=ΔAKC

Suy ra: AH=AK và BH=CK

c: Xét ΔHBM vuông tại H và ΔKCN vuông tại K có

MB=CN

góc M=góc N

Do đó ΔHBM=ΔKCN

Suy ra: góc HBM=góc KCN

=>góc OBC=góc OCB

hay ΔOBC can tại O

 

Cho tam giác ABC có AB=AC=5cm, BC=8cm. Kẻ AH vuông góc với BC (H thuộc BC)a, Chứng minh: HB=HC và BAH=CAHb, Tính độ dài AHc, Kẻ HD vuông góc với AB (D thuộc AB) , kẻ HE vuông góc với AC (E thuộc AC). Chứng minh tam giác HDE là tam giác cânBài 3: Cho tam giác ABC cân tại A. Trên tia đối của BC lấy điểm M, trên tia đối của CB lấy N sao cho BM=CNa, Chứng minh: tam giác ABM = tam giác ACNb, Kẻ BH vuông góc với AM, CK vuông...
Đọc tiếp

Cho tam giác ABC có AB=AC=5cm, BC=8cm. Kẻ AH vuông góc với BC (H thuộc BC)

a, Chứng minh: HB=HC và BAH=CAH

b, Tính độ dài AH

c, Kẻ HD vuông góc với AB (D thuộc AB) , kẻ HE vuông góc với AC (E thuộc AC). Chứng minh tam giác HDE là tam giác cân

Bài 3: Cho tam giác ABC cân tại A. Trên tia đối của BC lấy điểm M, trên tia đối của CB lấy N sao cho BM=CN

a, Chứng minh: tam giác ABM = tam giác ACN

b, Kẻ BH vuông góc với AM, CK vuông góc với AN( H thuộc AM,K thuộc AN). Chứng minh : AH=AK

c, Gọi O là giao điểm của HB và KC. Tam giác OBC là tam giác gì? Vì sao?

Bài 4: Cho tam giác ABC, kẻ BE vuông góc với AC và CF vuông góc với AB. Biết BE=CF=8 cm. Độ dài các đoạn thẳng BF và BC tỉ lệ với 3 và 5.

a, Chứng minh tam giác ABC là tam giác cân

b, Tính độ dài cạnh đáy BC

c, BE và CF cắt nhau tại O. Nối OA và EF. Chứng minh đường thẳng OA là trung trực của đoạn thẳng EF

Bài 5 : Cho tam giác ABC vuông tại A, BD là tia phân giác của góc ABC (D thuộc AC). Từ D kẻ DE vuông góc với BC tại E. Gọi I là giao điểm của AE và BD. Chứng minh:

a, Tam giác ADB= tam giác EDB

b, BD là đường trung trực của AE

c, Tam giác EDC vuông cân

d, Lấy F thuộc tia đối của tia AB sao cho AF=EC.Chứng minh 3 điểm E, D, F thẳng hàng

Bài 6: Cho tam giác MNP cân tại M. Trên cạnh MN lấy điểm E, trên cạnh MP lấy điểm F sao cho ME=MF. Gọi S là giao điểm của NF và PE. Chứng minh

a, Tam giác MNF= tam giác MPE

b, Tam giác NSE= tam giác PSE

c, EF // NP

d, Lấy K là trung điểm của NP. Chứng minh ba điểm M, S, K thẳng hàng

Bài 7: Cho tam giác ABC vuông tại A. Trên BC lấy E sao cho BE=AB. Qua E kẻ đường thẳng vuông góc với BC cắt AC tại D

a, Chứng minh AD=AE và góc ABD= góc EBD

b, Lấy điểm F thuộc tia đối của tia AB sao cho AF=EC. Chứng minh tam giác DFC cân

c, Gọi O là giao điểm của BD và AE. Chứng minh BD là đường trung trực của AE

d, Chứng minh 3 điểm F, D,E thẳng hàng

Mình đang cần gấp

5
22 tháng 2 2020

Ta có: ΔABC đều, D ∈ AB, DE⊥AB, E ∈ BC
=> ΔBDE có các góc với số đo lần lượt là: 300
; 600
; 900
 => BD=1/2BE
Mà BD=1/3BA => BD=1/2AD => AD=BE => AB-AD=BC-BE (Do AB=BC)
=> BD=CE. 
Xét ΔBDE và ΔCEF: ^BDE=^CEF=900
; BD=CE; ^DBE=^ECF=600
=> ΔBDE=ΔCEF (g.c.g) => BE=CF => BC-BE=AC-CF => CE=AF=BD
Xét ΔBDE và ΔAFD: BE=AD; ^DBE=^FAD=600
; BD=AF => ΔBDE=ΔAFD (c.g.c)
=> ^BDE=^AFD=900
 =>DF⊥AC (đpcm).
b) Ta có: ΔBDE=ΔCEF=ΔAFD (cmt) => DE=EF=FD (các cạnh tương ứng)
=> Δ DEF đều (đpcm).
c) Δ DEF đều (cmt) => DE=EF=FD. Mà DF=FM=EN=DP => DF+FN=FE+EN=DE+DP <=> DM=FN=EP
Lại có: ^DEF=^DFE=^EDF=600=> ^PDM=^MFN=^NEP=1200
 (Kề bù)
=> ΔPDM=ΔMFN=ΔNEP (c.g.c) => PM=MN=NP => ΔMNP là tam giác đều.
d) Gọi AH; BI; CK lần lượt là các trung tuyến của  ΔABC, chúng cắt nhau tại O.
=> O là trọng tâm ΔABC (1)
Do ΔABC đều nên AH;BI;BK cũng là phân giác trong của tam giác => ^OAF=^OBD=^OCE=300
Đồng thời là tâm đường tròn ngoại tiếp tam giác => OA=OB=OC
Xét 3 tam giác: ΔOAF; ΔOBD và ΔOCE:
AF=BD=CE
^OAF=^OBD=^OCE      => ΔOAF=ΔOBD=ΔOCE (c.g.c)
OA=OB=OC
=> OF=OD=OE => O là giao 3 đường trung trực  Δ DEF hay O là trọng tâm Δ DEF (2)
(Do tam giác DEF đề )
/

(Do tam giác DEF đều)
Dễ dàng c/m ^OFD=^OEF=^ODE=300
 => ^OFM=^OEN=^ODP (Kề bù)
Xét 3 tam giác: ΔODP; ΔOEN; ΔOFM:
OD=OE=OF
^ODP=^OEN=^OFM          => ΔODP=ΔOEN=ΔOFM (c.g.c)
OD=OE=OF (Tự c/m)
=> OP=ON=OM (Các cạnh tương ứng) => O là giao 3 đường trung trực của  ΔMNP
hay O là trọng tâm ΔMNP (3)
Từ (1); (2) và (3) => ΔABC; Δ DEF và ΔMNP có chung trọng tâm (đpcm).

7 tháng 5 2021
dài dữ vậy

a) Xét tứ giác AEFB có 

\(\widehat{EAB}+\widehat{EFB}=180^0\left(90^0+90^0=180^0\right)\)

Do đó: AEFB là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

Suy ra: \(\widehat{CAF}=\widehat{CBE}\)(Hai góc nội tiếp cùng chắn cung FE)

Xét ΔACF và ΔBCE có 

\(\widehat{ACF}\) chung

\(\widehat{CAF}=\widehat{CBE}\)(cmt)

Do đó: ΔACF∼ΔBCE(g-g)

Suy ra: \(\dfrac{AF}{BE}=\dfrac{CF}{CE}\)(Các cặp cạnh tương ứng tỉ lệ)(1)

Xét ΔCFE vuông tại F có 

\(\cos\widehat{C}=\dfrac{CF}{CE}\)(2)

Từ (1) và (2) suy ra \(\dfrac{AF}{BE}=\cos\widehat{C}\)

hay \(AF=BE\cdot\cos\widehat{C}\)

anh ơi làm phần b giúp em

 

16 tháng 7 2019
https://i.imgur.com/oNWJvoV.jpg
16 tháng 7 2019
https://i.imgur.com/6wFR92g.jpg
31 tháng 10 2021

b: Xét ΔCFE vuông tại F và ΔCAB vuông tại A có 

\(\widehat{C}\)chung

Do đó: ΔCFE\(\sim\)ΔCAB

Suy ra: \(\dfrac{CF}{CA}=\dfrac{CE}{CB}\)

\(\Leftrightarrow CF\cdot CB=CE\cdot CA\)

\(\Leftrightarrow CF\cdot CB=CA\cdot\dfrac{1}{2}AC\)

\(\Leftrightarrow AC^2=2\cdot CF\cdot CB\)

18 tháng 4 2018

VẼ HÌNH ĐI

18 tháng 4 2018

Trên tia BC lấy điểm N,trên tia BC lấy điểm M sao cho BM=BC=BN là sao hả bạn 

xem lại đề bài nhé làm sao lại bằng BC được ??