Cho năm chữ số 0, 1, 2, 3, 4. Hỏi có thể lập được bao nhiêu số có bốn chữ số khác nhau và chia hết cho 5?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có : 4 cách chọn hàng nghìn , 4 cách chọn hàng trăm , 3 cách chọn hàng chục và 1 cách chọn hàng đơn vị .
Vậy có thể lập được số số có 4 chữ số khác nhau và chia hét cho 5 là :
4 x 4 x 3 x 1 = 48 ( số )
Đáp số : 48 số
ta có chắc chắn số đó sẽ chia hết cho 9,3 vì tổng của 4 chữ số đã cho có tổng bằng 9
mà số đó chia hết cho 2,5 suy ra tận cùng của nó là 0
Vậy hàng nghìn sẽ có 3 cách chọn
Hàng trăm có sẽ có 2 cách chọn
Hàng chục có 1 cách chọn
Hàng đơn vị có 1 cách chọn
Vậy có thể lập được số số có 4 chữ số chia hết cho 3,9,2,5 là
2.3.1.1=6(số)
Cho phân số c/dneeus rút gọn phân sốc/dthif được phân số 5/6. Nếu giảm tử số đi 10 đơn vị rồi rút gọn thì được phân số 25/36. Tìm phân số c/d
b, Số có 4 chữ số có dạng \(\overline{abcd}\).
a có 7 cách chọn.
b có 7 cách chọn.
c có 6 cách chọn.
d có 5 cách chọn.
\(\Rightarrow\) có \(7.7.6.5=1470\) số thỏa mãn.
Chữ số hàng nghìn có 4 cách chọn
Chữ số hàng trăm có 3 cách chọn
Chữ số hàng chục có 2 cách chọn
Chữ số hàng đơn vị có 1 cách chọn
Vậy có thể lập dc là :
4 x 3 x 2 x 1 =24 (số)
Đáp số : 24 số
2. Dãy số có 4 chữ số chia hết cho 3 là: 1002;1005;1008;.....;9999
Số các số có 4 chữ số chia hết cho 3 là: (9999 - 1002) : 3 + 1 = 3000 số
Giải (1)
Có thể lập được các số có 5, 4, 3, 2 chữ số.
Xét về 5 chữ số: a b c d e:
a có 4 lựa chọn (lc)
b có 4 lc
c có 3 lc
d có 2 lc
e có 1 lc
Vậy có tất cả các số khác nhau có 5 chữ số: 4 × 4 × 3 × 2 × 1 = 96 (số)
Xét về 4 chữ số: a b c d
a có 4 lc
b có 4 lc
c có 3 lc
d có 2 lc
Vậy... : 4 × 4 × 3 × 2 = 96 (số)
Tự làm ...
Xét về 3 chữ số có 48 (số) Xét về 2 chữ số có 16 (số)
Vậy ... 96 + 96 + 48 + 16 = 256 (số)
Đ/s:..
Giải (2)
Cách 1:
Số đầu tiên có 4 chữ số chia hết cho 3 là: 1002
Số cuối cùng có 4 chữ số chia hết cho 3 là: 9999
Vì khoảng cách giữa 2 số là 3 đơn vị và ta có công thức:
(Số cuối - số đầu) ÷ khoảng cách + 1
=> (9999 - 1002) ÷ 3 + 1 = 3000 (số)
Đ/s:
Đáp án B
Số cần lập có dạng a b c d ¯
trong đó a ; b ; c ; d ∈ 0 ; 1 ; 2 ; 3 ; 4 ; 5 ; 6
trong đó d = 0 ; 5
TH1: d = 0 khi đó a,b,c có A 6 3 cách chọn và sắp xếp.
TH2: d = 0 khi đó a,b,c có 5.5.4 ( a # 0 ) cách chọn và sắp xếp
Theo quy tắc cộng có
A 6 3 + 5 . 5 . 4 = 220 số thỏa mãn yêu cầu bài toán
Đáp án B.
Số cần lập có dạng a b c d ¯ trong đó a ; b ; c ; d ∈ 0 ; 1 ; 2 ; 3 ; 4 ; 5 ; 6 ; trong đó d = {0;5}.
TH1: d = 0 khi đó a,b,c có A 6 3 cách chọn và sắp xếp.
TH2: d = 5 khi đó a,b,c có 5.5.4 a ≠ 0 cách chọn và sắp xếp.
Theo quy tắc cộng có A 6 3 + 5 . 5 . 4 = 220 số thỏa mãn yêu cầu bài toán.
Bài 1:Cho A={0;1;2;3;4;5}.Hỏi có thể lập được bao nhiêu số có 4 chữ số khác nhau sao cho tổng hai chữ số đầu nhỏ hơn tổng hai chữ số sau 1 đơn vị
Bài 2:Với các chữ số 1;2;3;4;5;6 có thể lập được bao nhiêu số tự nhiên thỏa mãn?
a,gồm có 6 chữ số
b,gồm có 6 chữ số khác nhau
c,gồm có 6 chữ số và chia hết cho 2
Bài 3:Cho X={0;1;2;3;4;5;6}
a,Có bao nhiêu số chẵn có 4 chữ số khác nhau đôi một ?
b,Có bao nhiêu chữ số có 3 chữ số khác nhau chia hết cho 5\
c, Có bao nhiêu số có 3 chữ số khác nhau chia hết cho 9 .
Bài 4:Có bao nhiêu số tự nhiên có tính chất.
a,là số chẵn có 2 chữ số không nhết thiết phải khác nhau
b,là số lẻ và có 2 chữ số không nhất thiết phải khác nhau
c,là số lẻ và có hai chữ số khác nhau
d,là số chẵn và có 2 chữ số khác nhau
Bài 5:Cho tập hợp A{1;2;3;4;5;6}
a,có thể lập được bao nhiêu số gồm 4 chữ số khác nhau hình thành từ tập A
b,có thể lập được bao nhiêu số gồm 3 chữ số khác nhau và chia hết cho 2
c,có thể lập được bao nhiêu số gồm 5 chữ số khác nhau và chia hết cho 5
dài quá
botay.com.vn
Giải
Số chia hết cho 5 thì có tận cùng bằng 0 hoặc bằng 5.
*.Tận cùng bằng 0:
-Có 1 cách chọn chữ số hàng đơn vị (là 0)
-Có 9 cách chọn chữ số hàng trăm.
-Có 8 cách chọn chữ số ngành chục.
Vậy có: 1 x 9 x 8 = 72 (số)
*.Tận cùng bằng 5:
-Có 1 cách chọn chữ số hàng đơn vị (là 5).
-Có tám cách chọn chữ số hàng trăm (khác 0 và 5)
-Có 8 cách chọn chữ số hàng chục.
Vậy có: 1 x 8 x 8 = 64 (số)
Có tất cả: 72 + 64 = 136 (số)
24 số e ơi
k cho chị
THANKS!!!