C = 1/1x6 + 1/6 x 11 + 1/11 x 16 + ....... + 1/2011 x 2016
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=\frac{2009}{2011}\)
\(\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{x\left(x+1\right)}=\frac{2009}{2011}\)
\(2\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2009}{2011}\)
\(2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2009}{2011}\)
\(2\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{2009}{2011}\)
\(\frac{1}{2}-\frac{1}{x+1}=\frac{2009}{4022}\)
\(\frac{1}{x+1}=\frac{1}{2011}\)
\(x+1=2011\)
\(x=2010\)
\(A=\dfrac{1}{5}\left(\dfrac{1}{6}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{16}+...+\dfrac{1}{496}-\dfrac{1}{501}\right)\)
\(=\dfrac{1}{5}\cdot\dfrac{55}{334}=\dfrac{11}{334}\)
\(B=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{19}-\dfrac{1}{21}=\dfrac{20}{21}\)
\(C=\frac{1}{1.6}+\frac{1}{6.11}+\frac{1}{11.16}+...+\frac{1}{2011.2016}\)
\(5C=\frac{5}{1.6}+\frac{5}{6.11}+\frac{5}{11.16}+...+\frac{5}{2011.2016}\)
\(5C=1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+\frac{1}{11}-\frac{1}{16}+...+\frac{1}{2011}-\frac{1}{2016}\)
\(5C=1-\frac{1}{2016}\)
\(5C=\frac{2015}{2016}\)
\(C=\frac{2015}{2016}:5\)
\(C=\frac{403}{2016}\)
Đặt A = \(\frac{1}{1\times6}+\frac{1}{6\times11}+\frac{1}{11\times16}+...+\frac{1}{2011\times2016}\)
\(A\times5=\frac{5}{1\times6}+\frac{5}{6\times11}+\frac{5}{11\times16}+...+\frac{5}{2011\times2016}\)
\(A\times5=\frac{1}{1}-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+\frac{1}{11}-\frac{1}{16}+...+\frac{1}{2011}-\frac{1}{2016}\)
\(A\times5=\frac{1}{1}-\frac{1}{2016}\)
\(A=\frac{2015}{2016}\times\frac{1}{5}\)
\(A=\frac{2015}{10080}=\frac{403}{2016}\)