cho tam giác abc có chiều cao AH = 6cm và cạnh bc= 8cm . trên ac lấy điểm chính giữa d. nối b với d , trên bd lấy be gấp đôi ed. nối ae kéo dài cắt cạnh bc tại m. a, tính diện tích tam giác ABD b. tính BM
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
SAED = SEDC (AD=DC ; chung dường cao kẻ từ E)
SAED = ½ SAEB (ED = ½ BE ; chung đường cao kẻ từ A)
Suy ra SABE = SAEC
Mà 2 tam giác này có chung đáy AE nên dường cao kẻ từ B và đường cao kẻ từ C xuống AM bằng nhau.
2 đường cao này cũng là 2 đường cao của 2 tam giác BEM và CEM và có chung đáy EM.
Suy ra SBEM = SCEM
Vậy BM = MC = 8 : 2 = 4 (cm)
SAED = SEDC (AD=DC ; chung dường cao kẻ từ E)
SAED = ½ SAEB (ED = ½ BE ; chung đường cao kẻ từ A)
Suy ra SABE = SAEC
Mà 2 tam giác này có chung đáy AE nên dường cao kẻ từ B và đường cao kẻ từ C xuống AM bằng nhau.
2 đường cao này cũng là 2 đường cao của 2 tam giác BEM và CEM và có chung đáy EM.
Suy ra SBEM = SCEM
Vậy BM = MC = 8 : 2 = 4 (cm)
D là điểm chính giữa của đoạn thẳng BC
=>D là trung điểm của BC
=>BD/BC=1/2
=>\(S_{ABD}=\dfrac{1}{2}\cdot S_{ABC}=\dfrac{1}{2}\cdot360=180\left(cm^2\right)\)
AE=ED
A,E,D thẳng hàng
Do đó; E là trung điểm của AD
=>\(AE=\dfrac{1}{2}AD\)
=>\(S_{ABE}=\dfrac{1}{2}\cdot S_{ABD}=\dfrac{1}{2}\cdot180=90\left(cm^2\right)\)
SAED = SEDC ( AD=DC ; chung chung đường cao kẻ từ E )
AED = 1/2 SABE (ED = 1/2 BE ; chung đường cao kẻ từ A)
Suy ra SABE = SAEC
Mà 2 tam giác này có chung đáy AE nên đường cao kẻ từ B và đường cao kẻ từ C xuống AM bằng nhau.
2 đường cao này cùng là 2 đường cao của 2 tam giác BEM và CEM và có chung đáy E.
suy ra SBEM = SAEC
Vậy BM = MC = 8 : 2 = 4 ( cm)
1. Ta thấy tam giác DEC Và DBE có chung chiều cao hạ từ đỉnh D mà Đoạn thẳng EC, EB bằng nhau nên Hai tam giác DEC, DEB bằng nhau
Ta thấy tam giác DEI , DAI có chung chiều cao hạ từ đỉnh D mà Đoạn thẳng AI, IE bằng nhau nên Hai tam giác DIA, DIE bằng nhau [1]
Ta thấy hai tam giác AIB, IBE có chung chiều cao hạ từ đỉnh B mà Đoạn thẳng AI, IE bằng nhau nên Hai tam giác ABI, IBE bằng nhau [2]
Từ [1] và [2] => Hai tam giác ABD và DBE bằng nhau mà hai tam giác DBE, DEC bằng nhau
=> Hai tam giác ABD , DEC bằng nhau
=> Tổng diện tích DBE, DEC gấp đôi diện tích tam giác ABD mà hai tam giác có trung chiều cao hạ từ B xuống nên đoạn thẳng DC gấp đôi đoạn thẳng AD.
Ta thấy hai tam giác AEC và AEB có chiều cao hạ từ A xuống mà đoạn thẳng BE và EC bằng nhau nên hai tam giác AEC và AEB bằng nhau
=> Tam giác AEC = 360 : 2 = 180 [cm2 ]
Ta thấy hai tam giác DEC và DEA có chung chiều cao hạ từ E mà đoạn thẳng DC gấp đôi AD
=> Tam giác AED = \(\frac{1}{3}\)tam giác AEC
=> Tam giác AED = \(\frac{1}{3}\) x 180
= 60 [cm2]
Từ [1] ta thấy diện tích tam giác ADI = \(\frac{1}{2}\) tam giác ADE
=>ADI = 60 x \(\frac{1}{2}\)
=> ADI = 30 [cm2]
Vậy diện tích tam giác ADI = 30 cm2
Giải
1)
2)
a) Gọi A là đáy, H là chiều cao
Theo đề bài ta có:
\(\frac{AxH}{2}\) = 72 và \(\frac{A}{12}\) = \(\frac{H}{3}\)
\(\frac{A}{12}\) = \(\frac{Hx4}{3x4}\) = \(\frac{Hx4}{12}\)
Vậy A = H x 4
Thế A vào thì ta có:
\(\frac{Hx4xH}{2}\) = 72
\(Hx4^2\) = 144
\(H^2\) = 144 : 4
\(H^2\) = 36
\(H^2\) = 6 x 6
H = 36
Thế H vào thì ta có:
\(\frac{Ax6}{2}\) = 72
A x 6 = 72 x 2
A x 6 = 144
A = 144 : 6
A = 24
b)
Nối B với N, ta có: S(NBM) = S( NMC). Vì hai tam giác có chung đường cao hạ từ N xuống BC và đáy BM = MC (*).
Theo bài ra MN // AB, nên đường cao hạ từ B xuống MN bằng đường cao hạ từ A xuống MN. Do đó ta có: S( BMN) = S(AMN). Vì hai tam giác có đường cao bằng nhau, đáy MN chung (**)
Từ (*) và (**) ta có: S(AMN) = S(MNC). Vì hai tam giác có diện tích cùng bằng S(BMN).
Do S(AMN) + S(MNC) = S(AMC)
Mà S(AMC) = 1/2 S(ABC). Vì hai tam giác chung đường cao hạ từ A xuống BC, đáy MC = 1/2 BC.
Vậy S(MNC) = 1/4 S(ABC) = 72 : 4 = 18 (cm2).
Bạn vẽ hình xong rồi thì đay là lời giải:
+ Diện tích ADE=1/2 dien h ADE (vì có chung chiều cao hạ từ E xuông đáy AD và AD= 1/2 AC)
Suy ra : dien h ABC= 2 * EDC
EB = 2* ED (1)
+Diện tích ADE= 1/2 diện tích ADE (vì có chung chiều cao hạ từ đỉnh A xông đáy BD và ED=1/2 BE) (2)
Từ (1) va (2) suy ra :
Diện tích ABE=diện tÍCh AEC mà 2 tam giác này có chung đáy AE nên chiều cao tam giác ABE hạ từ đỉnh B xuống đáy AE bằng chiều cao hạ từ đỉnh C xuông đáy AE
Ta thấy 2 chiều cao này chính là chiều cao của BEM và CEM , mà 2 tam giác này nên diện h BEM=CEM mà chúng có diện tích bằng nhau, chung đáy EM Nên BM=MC
BM= 8:2=4