tìm p nguyên tố sao cho 1+p+p^2+p^3+p^4+p^5 chính phương
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử p^4+p^3+p^2+p+1 = n^2
Ta có;
+) 4n^2 ≥ 4p^4 + 4p^3 + 4p^2 + 4p+ 4 ≥ 4p^4+ 4p^3 + p^2 = ( 2p^2 + p )^2 [**]
+) 4n^2 ≤ 4p^4 + 4p^3 + 4p^2 + 4p + 4 + 5p^2 = ( 2p^2 + p + 2 )^2 [***]
Từ [**] và [***], suy ra;
4n^2 = ( 2p^2 + p + 1 )^2
Suy ra; 2n = 2p^2 + p + 1
Bình phương hai vế của đẳng thức này và so sánh với n^2, ta suy ra;
p^2 - 2p - 3 = 0
\(\Leftrightarrow\) ( p + 1 )( p - 3 ) = 0
Vì p là số nguyên tố nên phương trình trên có nghiệm p = 3 thỏa mãn.
Vậy số nguyên tố cần tìm là 3.
Gọi hai số nguyên tố cần tìm là a và b Ta có quy tắc : số chẵn + số lẻ =số lẻ Theo đề bài cho tổng a và b = 601 (số lẻ ). Nên ta có a là số chẵn mà là số nguyên tố . Vậy a là hai vì hai là số nguyên tố chẵn duy nhất Từ các lập luận trên ta có biểu thức : a+b=601. 2+b=601. b=601-2. b=599. Vậy b =599.hai số nguyên tố cần tìm là 2 và 599 ( bài 1)
1+2-3-4+5+6-7-8+9+10-.........+2010-2011-2012+2013+2014-2015-2016+2017
= 1+(2-3-4+5)+(6-7-8+9)+(10-11-12+13)+.......+(2014-2015-2016+2017)
= 1 + 0 + 0 + 0 + .........+ 0
= 1
Giả sử a là số nguyên tố chia 12 dư 9
=> a = 12k + 9 ( k \(\in\)N* )
= 3(4k + 3 ) chia hết cho 3
=> a chia hết cho 3. Mà a là số nguyên tố
=> a = 3
Mà 3 chia 12 dư 3
=> Điều giả sử trên là sai !
Vậy không có số nguyên tố nào chia 12 dư 9
Đặt p^4+p^3+p^2+p+1 = n^2
Ta có;
* 4n^2 ≥ 4p^4 + 4p^3 + 4p^2 + 4p+ 4 ≥ 4p^4+ 4p^3 + p^2 = ( 2p^2 + p )^2 [**]
* 4n^2 ≤ 4p^4 + 4p^3 + 4p^2 + 4p + 4 + 5p^2 = ( 2p^2 + p + 2 )^2 [***]
Từ [**] và [***], suy ra;
4n^2 = ( 2p^2 + p + 1 )^2
Suy ra; 2n = 2p^2 + p + 1
Bình phương hai vế của đẳng thức này và so sánh với n^2, ta suy ra;
p^2 - 2p - 3 = 0
tương đương; ( p + 1 )( p - 3 ) = 0
Vì p là số nguyên tố nên phương trình trên có nghiệm p = 3 thỏa mãn.
Vậy; số nguyên tố cần tìm là 3.
có thêm p^5 nữa bạn ạ