K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 5 2015

Nhận xét : \(\frac{a}{b+c}>\frac{a}{a+b+c}\)

               \(\frac{b}{a+c}>\frac{b}{a+b+c}\)

                \(\frac{c}{a+b}>\frac{c}{a+b+c}\)

Cộng từng vế => \(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=\frac{a+b+c}{a+b+c}=1\)(1)

+) Lại có: a;b; c là 3 cạnh của tam giác nên a < b+ c; b < a+ c; c< a+ b

=> \(\frac{a}{b+c}

8 tháng 5 2022

Cho a b c là độ dài dài ba cạnh của một tam giác chứng mình rằng a/b+c+b/c+a+c/a+b

23 tháng 2 2015

\(\left(1+\frac{b}{a}\right)\left(1+\frac{c}{b}\right)\left(1+\frac{a}{c}\right)=8\Leftrightarrow\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}=8\)

Ta có (a +b)2 >=4ab với mọi a,b>0. Dấu = xảy ra <=> a = b

(b+c)2 >=4bc, với mọi b,c >0. Dấu = xảy ra <=> b = c

(c+a)2 >=4ca, với mọi a,b>0. Dấu = xảy ra <=> c = a

=> (a+b)2(b+c)2(c+a)2 >=64a2b2c2 (a,b,c >0)

=> (a+b)(b+c)(c+a) >=8abc => (a+b)(b+c)(c+a)/abc >=8

Dấu = xảy ra <=> a = b = c <=> Tam giác đều

16 tháng 10 2017

Áp dụng bất đẳng thức Cô - si cho 3 số dương a, b, c

\(a+b\ge2\sqrt{ab}\)    ;  \(b+c\ge2\sqrt{bc}\);   \(c+a\ge\sqrt{ca}\)

Nhân các vế của BĐT \(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8abc\)

Dấu " = " xảy ra khi a = b = c => tam giác đó đều

10 tháng 8 2015

Do a,b,c là 3 cạnh là 3 cạnh tam giác =>a,b,c>0

Áp dụng BĐT co si cho 2 số dương ta có:

a+b\(\ge2\sqrt{ab}\)

b+c\(\ge2\sqrt{bc}\)

a+c\(\ge2\sqrt{ac}\)

=>(a+b)(b+c)(c+a)>\(2\sqrt{ab}.2\sqrt{bc}.2\sqrt{ac}=8\sqrt{a^2b^2c^2}=8abc\)

Dấu bằng xảy ra <=>a=b b=c c=a=>a=b=c

Mà theo đề bài (a+b)(b+c)(c+a)=8abc

=>a=b=c=>tam giác đó là tam giác đều

6 tháng 1 2017

co cach khac khong , minh chua hoc bat dang thuc cosi

8 tháng 8 2023

bạn Tham khảo bài bạn này 

7 tháng 5 2016

Vì a,b,c là độ dài 2 cạnh của tam giác .Áp dụng BĐT Cô si ta có:

a+b>=2x căn(ab)

b+c>= 2x căn(bc)

c+a>= 2x căn(ac)

Nhân vế theo vế ta được (a+b)(b+c)(c+a) >=8abc

Dấu = xảy ra <=> a=b;b=c;c=a => a=b=c => tam giác đó là tam giác đều

17 tháng 8 2016

Ta có : a+b > c , b+c > a , c+a > b

Xét : \(\frac{1}{a+c}+\frac{1}{b+c}>\frac{1}{a+b+c}+\frac{1}{b+c+a}=\frac{2}{a+b+c}>\frac{2}{a+b+a+b}=\frac{1}{a+b}\)

Tương tự , ta cũng có : \(\frac{1}{a+b}+\frac{1}{b+c}>\frac{1}{a+c};\frac{1}{a+b}+\frac{1}{a+c}>\frac{1}{b+c}\)

Vậy ta có đpcm

Chú ý : a,b,c là độ dài ba cạnh của một tam giác chứ không phải a+b,b+c,c+a nhé :)

Tham khảo 

undefined

20 tháng 3 2021

bạn trình bày rõ bđt 1/x + 1/y >_ 4/x+y dc ko vì mình ko hiểu lắm