Cho đường tròn tâm O và đưong thắng d không giao nhau. Kẻ OH vuông góc với đường thẳng d tại H. Lấy điểm A thuộc tia đối của tia OH (A nằm ngoài đường tròn và OA < OH). Từ A kẻ tiếp tuyến với đường tròn (O) tại tiếp điểm M cắt d tại B. Từ B kẻ tiếp tuyển thứ hai với đường tròn (O) tại tiếp điểm N. a) Chứng minh rằng: Năm điểm H, B, M, O, N cùng thuộc một đường tròn. b)Chứng minh: HO là phân giác của MHN c) Đường thẳng BN lần lượt cắt HM, HO theo thứ tự tại P, Q. Chứng minh: QP.HN = HP.QN và QP.BN QN.BP d) Trên BN lấy điểm C sao cho HC = CN. Chứng minh: HC đi qua trung diểm của AB
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: Xét (O) có
AB là tiếp tuyến
AC là tiếp tuyến
Do đó: AB=AC
hay A nằm trên đường trung trực của BC(1)
Ta có: OB=OC
nên O nằm trên đường trung trực của BC(2)
Ta có: HB=HC
nên H nằm trên đường trung trực của BC(3)
Từ (1), (2) và (3) suy ra O,H,A thẳng hàng
https://www.youtube.com/channel/UCU_DXbWfhapaSkAR7XsK5yQ?view_as=subscriber
Gọi OD cắt (O) tại E,F \(\left(E\in DF\right)\)ta có:
\(\widehat{DAE}=\widehat{DFM}\)(cùng bù với \(\widehat{MAE}\))
\(\widehat{ADE}=\widehat{FDM}\)(chung)
Do đó \(\Delta DAE\text{~}\Delta DFM\text{ }\left(g.g\right)\)
\(\Rightarrow\frac{DA}{DF}=\frac{DE}{DM}\)
\(\Rightarrow DA.DM=DE.DF\)
\(=\left(DO-OE\right)\left(DO+OF\right)=\left(DO-OM\right)\left(DO+OM\right)=DO^2-OM^2\)(đpcm)
a: OH*OM=OA^2=R^2
b: ΔOCD cân tại O
mà OI là đường trung tuyến
nên OI vuông góc với CD
Xét tứ giác OIAM có
góc OIM=góc OAM=90 độ
nên OIAM là tứ giác nội tiếp
c: Xét ΔOHK vuông tại H và ΔOIM vuông tại I có
góc HOK chung
Do đo: ΔOHK đồng dạng với ΔOIM
=>OH/OI=OK/OM
=>OI*OK=OH*OM=R^2=OC^2
mà CI vuông góc với OK
nên ΔOCK vuông tại C
=>KC là tiếp tuyến của (O)