K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 8 2016

là số viết đc đướ dạng số thập phân vô hạn ko tuần hoàn

kí hiệu là I

14 tháng 8 2016

Lên gg mà tìm bn nha

4 tháng 11 2017

Trong toán học, số vô tỉ là số thực không phải là số hữu tỷ, nghĩa là không thể biểu diễn được dưới dạng tỉ số {\frac {a}{b}} (a và b là các số  nguyên).

Tập hợp số vô tỉ ký hiệu là {\mathbb I}

4 tháng 11 2017

Trong toán học, số vô tỉ là số thực không phải là số hữu tỷ, nghĩa là không thể biểu diễn được dưới dạng tỉ số {\displaystyle {\frac {a}{b}}}{\frac {a}{b}} ({\displaystyle a}a và {\displaystyle b}b là các số nguyên).Tập hợp số vô tỉ ký hiệu là {\displaystyle \mathbb {I} }{\mathbb I}

{\displaystyle \mathbb {I} =\left\{x|x\neq {\frac {m}{n}}\forall m\in \mathbb {Z} ,\forall n\in \mathbb {Z^{*}} \right\}}{\mathbb {I}}=\left\{x|x\neq {\frac {m}{n}}\forall m\in {\mathbb {Z}},\forall n\in {\mathbb {Z^{*}}}\right\}

12 tháng 10 2018

N:tập hợp các số tự nhiên

N*:tập hợp các số tự nhiên khác 0.

Z:tập hợp các số nguyên

S:tập hợp các nghiệm

Q:tập hợp các số

T:tập hợp các số và có dạng số:T={a2=-1}

12 tháng 10 2018

Q:tập hợp tất cả các số

T:tập hợp tất cả các số và thêm các số có dạng:a2=-k(k thuộc N)

1. Tập hợp số tự nhiên, kí hiệu NN={0, 1, 2, 3, ..}.2. Tập hợp số nguyên, kí hiệu là ZZ={…, -3, -2, -1, 0, 1, 2, 3, …}.Tập hợp số nguyên gồm các phân tử là số tự nhiên và các phân tử đối của các số tự nhiên.Tập hợp các số nguyên dương kí hiệu là N*3. Tập hợp số hữu tỉ, kí hiệu là QQ={ a/b;  a, b∈Z, b≠0}Mỗi số hữu tỉ có thể biểu diễn bằng một số thập phân hữu hạn hoặc vô...
Đọc tiếp

1. Tập hợp số tự nhiên, kí hiệu N

N={0, 1, 2, 3, ..}.

2. Tập hợp số nguyên, kí hiệu là Z

Z={…, -3, -2, -1, 0, 1, 2, 3, …}.

Tập hợp số nguyên gồm các phân tử là số tự nhiên và các phân tử đối của các số tự nhiên.

Tập hợp các số nguyên dương kí hiệu là N*

3. Tập hợp số hữu tỉ, kí hiệu là Q

Q={ a/b;  a, b∈Z, b≠0}

Mỗi số hữu tỉ có thể biểu diễn bằng một số thập phân hữu hạn hoặc vô hạn tuần hoàn.

4. Tập hợp số thực, kí hiệu là R

Một số được biểu diễn bằng một số thập phân vô hạn không tuần hoàn được gọi là một số vô tỉ. Tập hợp các số vô tỉ kí hiệu là I. Tập hợp số thực gồm các số hữ tỉ và các số vô tỉ.

= Q  I.

5. Một số tập hợp con của tập hợp số thực.

+ Đoạn [a, b] ={x ∈ R / a ≤ x ≤ b}

+ Khoảng (a; b) ={x ∈ R / a < x < b}

– Nửa khoảng [a, b) = {x ∈ R / a ≤ x < b}

– Nửa khoảng (a, b] ={x ∈ R / a < x ≤ b}

– Nửa khoảng [a; +∞) = {x ∈ R/ x ≥ a}

– Nửa khoảng (-∞; a] = {x ∈ R / x ≤a}

– Khoảng (a; +∞) = {x ∈ R / x >a}

– Khoảng (-∞; a) = {x ∈R/ x<a}.

 Luyện trắc nghiệmTrao đổi bài
3
3 tháng 8 2016

nè pn bị dảnh ak

3 tháng 8 2016

choán váng

Số hữu tỉ nào không là số hữu tỉ âm và cũng không là số hữu tỉ dương?Giá trị tuyệt đối của một số hữu tỉ x được xác định như thế nào?Định nghĩa lũy thừa với số mũ tự nhiên của một số hữu tỉ. Viết công thức.Nêu công thứcNhân hai lũy thừa cùng cơ số.Chia hai lũy thừa cùng cơ số khác 0.Lũy thừa của một lũy thừa.Lũy thừa của một tích.Lũy thừa của một thương.Thế...
Đọc tiếp

Số hữu tỉ nào không là số hữu tỉ âm và cũng không là số hữu tỉ dương?

  1. Giá trị tuyệt đối của một số hữu tỉ x được xác định như thế nào?
  2. Định nghĩa lũy thừa với số mũ tự nhiên của một số hữu tỉ. Viết công thức.
  3. Nêu công thức
  • Nhân hai lũy thừa cùng cơ số.
  • Chia hai lũy thừa cùng cơ số khác 0.
  • Lũy thừa của một lũy thừa.
  • Lũy thừa của một tích.
  • Lũy thừa của một thương.
  1. Thế nào là tỉ số của hai số hữu tỉ? Cho ví dụ.
  2. Tỉ lệ thức là gì? Phát biểu hai tính chất của tỉ lệ thức. Nêu tính chất của dãy tỉ số bằng nhau.
  3. Thế nào là số vô tỉ? Cho ví dụ. Kí hiệu tập hợp các số vô tỉ.
  4. Thế nào là số thực? Cho ví dụ. Kí hiệu tập hợp các số thực.
  5. Định nghĩa căn bậc hai của một số không âm. Tính √9; √0;√(-3)2
0
HQ
Hà Quang Minh
Giáo viên
23 tháng 9 2023

Tập hợp các số thực không phải là số vô tỉ chính là tập hợp \(\mathbb{Q}\) các số hữu tỉ.

1 tháng 12 2019

Số vô tỉ:

Số vô tỉ là số không thể biểu diễn dưới dạng tập hợp các phân số \dpi{100} \small \frac{a}{b} với  a, b là số nguyên và b # 0. Hay nói cách khác là số vô tỉ không thể biểu diễn dưới dạng tỉ số. Một số vô tỉ hoặc là số siêu việt hoặc là số đại số, trong đó hầu hết các số vô tỉ đều là số siêu việt và số siêu việt là số vô tỉ.

Tập hợp số vô tỉ ký hiệu là \dpi{100} \small \mathbb{I}

VD:\dpi{100} \small \mathbb{I} = \left \{ x|x\, \neq \, \frac{m}{n}\, \forall m\in \, \mathbb{Z},\, \forall n\, \in \, \mathbb{Z}^{*} \right \}

Số thực:

Số thực là tập hợp các số hữu tỉ và vô tỉ.

Tập hợp số thực kí hiệu là R

VD:Số nguyên là 35 còn số thực là số pi (3,141592…)

Chúc bạn học tốt ^^