K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 8 2016

Điều kiện x>=-2; y>=0; x>=y-3

Ta xét PT thứ nhất 

Đặt √(x+2) = a; √y = b (a,b>=0)

Thì PT thành a(a- b+ 1) - b = 0

<=> a- ab+ a - b = 0

<=> a(a - b)(a + b) + (a -b) =0

<=> (a - b)(a2 + ab + 1)=0

Đễ thấy a2 + ab + 1 >0

Nên a =b 

Thế vào ta được y = x + 2

Thay cái này vào PT còn lại là xong

14 tháng 8 2016

\(\hept{\begin{cases}\sqrt{x+2}\left(x-y+3\right)=\sqrt{y}\left(1\right)\\x^2+\left(x+3\right)\left(2x-y+5\right)=x+16\left(2\right)\end{cases}}\)
DKXD :x>=-2; y>=0
Đặt\(\hept{\begin{cases}\sqrt{x+2=a}\\x-y+3=b\end{cases}\left(a\ge0\right)}\)
Pt 1 có dạng \(ab=\sqrt{a^2-b+1}\Leftrightarrow a^2b^2=a^2-b+1\Leftrightarrow a^2\left(b-1\right)\left(b+1\right)+b-1=0\)
\(\Leftrightarrow\left(b-1\right)\left(a^2b+a^2+1\right)=0\)
+> b-1=0\(\Rightarrow b=1\Leftrightarrow x-y+3=1\)
\(\)Khi đó pt (2) \(\Leftrightarrow x^2+\left(x+3\right)\left(x+2+1\right)=x+16\Leftrightarrow x^2+\left(x+3\right)^2=x+16\)
\(\Leftrightarrow x^2+x^2+6x+9=x+16\Leftrightarrow2x^2+5x-7=0\)
Có : 2+5-7=0
Nên pt trên có 2 no \(x_1=1\left(tm\right);x_2=-\frac{7}{2}\left(ktm\right)\)
\(\Rightarrow1-y+3=1\Leftrightarrow y=3\left(tm\right)\)
+>\(a^2b+a^2+1=0\Leftrightarrow\left(x+2\right)\left(x+3-y\right)+x+3=0\)(3)
Đặt \(x+3=m\). Pt(3) có dạng \(\left(m-1\right)\left(m-y\right)+m=0\Leftrightarrow m^2-m-my+y+m=0\Leftrightarrow m^2=y\left(m-1\right)\)
Nếu \(m-1=0\Leftrightarrow x+3-1=0\Leftrightarrow x=-2\left(tm\right)\Rightarrow y=0\left(tm\right)\)
Nhưng k tm pt 2
\(\Rightarrow m-1\ne0\Rightarrow y=\frac{m^2}{m-1}=\frac{\left(x+3\right)^2}{x+2}\)
Thay vào pt (2) ta được \(x^2+\left(x+3\right)\left(2x+5-\frac{\left(x+3\right)^2}{x+2}\right)=x+16\)
ĐẾn đây tự nhân chéo chuển vế ta được \(2x^3+7x^2-8x-29=0\)

2 tháng 7 2017

$\left\{\begin{matrix}\sqrt{x+2}(x-y+3)=\sqrt{y} & \\ x^2+(x+3)(2x-y+5)=x+16 & \end{matrix}\right.$ - Phương trình - hệ phương trình - bất phương trình - Diễn đàn Toán học

2 tháng 7 2017

Bài này nhẹ nhàng thôi :)
Đợi nọ mình nâng bậc 5 nhưng đợt này mình nâng bậc 2 thôi :v
Xử lí (x+2-y+1) = (( căn(x+2) - căn(y) )( căn(x+2)+căn(y)) +1) 
-> (x-y+1) căn(x+2) - căn(y) =0
<=> (( căn(x+2) - căn(y) )( căn(x+2)+căn(y)) +1) ( căn(x+2)) - căn(y)=0
<=> ( căn(x+2) - căn(y) ) (....)=0
=> x+2=y 
Còn (..) hiển nhiên >0 ( Đoạn đấy bạn tự phân tích ) 
P/s: Thực sự mình hong biết code gõ latex trên đây là gì -_-

17 tháng 8 2020

\(\hept{\begin{cases}\sqrt{x+2}\left(x-y+3\right)=\sqrt{y}\left(1\right)\\x^2+\left(x+3\right)\left(2x-y+5\right)=x+16\left(2\right)\end{cases}}\)

\(ĐK:x\ge-2;y\ge0\)

Ta có: \(\left(1\right)\Leftrightarrow\left(x+2\right)\sqrt{x+2}-y\sqrt{x+2}+\sqrt{x+2}-\sqrt{y}=0\)

\(\Leftrightarrow\left(x+2-y\right)\sqrt{x+2}+\frac{x+2-y}{\sqrt{x+2}+\sqrt{y}}=0\)\(\Leftrightarrow\left(x+2-y\right)\left(\sqrt{x+2}+\frac{1}{\sqrt{x+2}+\sqrt{y}}\right)=0\)

Dễ thấy \(\sqrt{x+2}+\frac{1}{\sqrt{x+2}+\sqrt{y}}>0\)nên \(x+2-y=0\Rightarrow y=x+2\)

Thay y = x + 2 vào (2), ta được: \(x^2+\left(x+3\right)\left[2x-\left(x+2\right)+5\right]=x+16\)

\(\Leftrightarrow x^2+\left(x+3\right)^2=x+16\Leftrightarrow2x^2+5x-7=0\)

\(\Leftrightarrow\left(x-1\right)\left(2x+7\right)=0\Leftrightarrow\orbr{\begin{cases}x=1\left(tm\right)\\x=\frac{-7}{2}\left(ktm\right)\end{cases}}\)

Vậy phương trình có 1 nghiệm duy nhất là \(\left(x,y\right)=\left(1,3\right)\)

19 tháng 12 2019

1/ĐKXĐ: \(x^2+4y+8\ge0\)

PT (1) \(\Leftrightarrow\left(x-2\right)\left(x-y+3\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=2\\x=y-3\end{cases}}\)

+) Với x = 2, thay vào PT (2): \(4\sqrt{y^2+4}=y\sqrt{4y+12}\) (\(\text{ĐKXĐ:}y\ge-3\))

\(\Leftrightarrow\hept{\begin{cases}y\ge0\\16\left(y^2+4\right)=y^2\left(4y+12\right)\end{cases}}\Leftrightarrow\hept{\begin{cases}y\ge0\\4\left(y^3-y^2-16\right)=0\end{cases}}\)

\(\Rightarrow y=\frac{1}{3}\left(1+\sqrt[3]{217-12\sqrt{327}}+\sqrt[3]{217+12\sqrt{327}}\right)\)(nghiệm khổng lồ quá chả biết tính kiểu gì nên em nêu đáp án thôi:v)

Vậy...

+) Với x = y - 3, thay vào PT (2):

\(\left(y-1\right)\sqrt{y^2+4}=y\sqrt{y^2-2y+17}\)

\(\Rightarrow\left(y-1\right)^2\left(y^2+4\right)=y^2\left(y^2-2y+17\right)\)(Biến đổi hệ quả nên ta dùng dấu suy ra)

\(\Leftrightarrow4\left(1-3y\right)\left(y+1\right)=0\Leftrightarrow\orbr{\begin{cases}y=\frac{1}{3}\\y=-1\end{cases}}\)

Thử lại ta thấy chỉ có y = - 1 \(\Rightarrow x=y-3=-4\)

8 tháng 2 2020

ĐK: \(x\ge-2;y\ge0\)

\(\hept{\begin{cases}\sqrt{x+2}\left(x-y+3\right)=\sqrt{y}\\x^2+\left(x+3\right)\left(2x-y+5\right)=x+16\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\sqrt{x+2}\left[\left(x+2\right)-y+1\right]=\sqrt{y}\\3\left(x^2+4x+4\right)-2\left(x+2\right)-y\left(x+2\right)-y-9=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\sqrt{x+2}\left[\left(x+2\right)-y+1\right]=\sqrt{y}\\3\left(x+2\right)^2-2\left(x+2\right)-y\left(x+2\right)-y-9=0\end{cases}}\)

Đặt \(\hept{\begin{cases}\sqrt{x+2}=a\left(a\ge0\right)\\\sqrt{y}=b\left(b\ge0\right)\end{cases}}\)

\(\Rightarrow\)Hệ phương trình \(\Leftrightarrow\hept{\begin{cases}a^3+a-ab^2=b\\3a^4-2a^2-a^2b^2-b^2-9=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}\left(a-b\right)\left(a^2+ab+1\right)=0\\3a^4-2a^2-a^2b^2-b^2-9=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}a=b\left(a^2+ab+1>0\right)\\3a^4-2a^2-a^2b^2-b^2-9=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}a=b\\2a^4-3a^2-9=0\end{cases}\Leftrightarrow}\hept{\begin{cases}a^2=b^2\\a^2=3\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=3\end{cases}}}\)( thỏa mãn )

Kết luận: ...

21 tháng 3 2020

Biến đổi phương trình dưới về tam thức bậc 2 với ẩn x hoặc ẩn y

12 tháng 10 2017

PT 1 \(\Leftrightarrow x-y.x^2+xy+y^2+3.x-y-3x^2+y^2-2=0\)

\(\Leftrightarrow x^3-3x^3+3x-1=y^3+3y^3+3y+1\)

\(\Leftrightarrow x-1^3=x+1^3\)

\(\Leftrightarrow x-y-2=0\)

Thay vào PT 2 nhân liên hợp. 

PT 1 suy ra \(y=x-2\)thay vào PT 2, ta có:

\(4\sqrt{x+2}+\sqrt{22-3x}=x^2+8\)\(-2\le x\le\frac{22}{3}\)

\(\Leftrightarrow4.\sqrt{x+2}-2+\sqrt{22-3x}-4=x^2-4\)

\(\Leftrightarrow x-2.x+2+\frac{3}{\sqrt{22-3x}+4}-\frac{4}{\sqrt{x+2}+2}=0\)

TH1:x=2 thay vào (1) suy ra y=0

TH2: f(x)= \(x+2+\frac{3}{\sqrt{22-3x}+4}-\frac{4}{\sqrt{x+2}+2}=0\)*

ta thấy x=-1 là 1 nghiệm của PT(*)

NHận xét rằng giả xử có số a thoả \(-2\le x\le a\le\frac{22}{3}\)

Ta có: \(\sqrt{x+2}< \sqrt{a+2};\sqrt{22-3x}>\sqrt{22-3a}\)

\(\Rightarrow-\frac{4}{\sqrt{x+2}+2}< -\frac{4}{\sqrt{a+2}+2}\)

       \(\frac{3}{\sqrt{22-3x}+4}< \frac{3}{\sqrt{22-3a}+4}\)

Suy ra f(x)<< f(a) suy hàm f(x) đồng biến

suy x=-1 thì f(x)=0

       x<-1 thì f(x) <0

       x>-1 thì f(x)>0

suy ra x=-1 là nghiệm duy nhất của(*)

thay vào (1) ta có y=-3

P/s: Tôi ko chắc, mới lớp 6 thôi