Tính nhanh
\(\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+...........+\frac{1}{1+2+.....+30}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt A = \(\frac{\frac{1}{2}}{1+2}+\frac{\frac{1}{2}}{1+2+3}+...+\frac{\frac{1}{2}}{1+2+3+....+100}\)
= \(\frac{1}{2}\left(\frac{1}{2.3:2}+\frac{1}{3.4:2}+\frac{1}{4.5:2}+...+\frac{1}{100.101:2}\right)\)
= \(\frac{1}{2}\left(\frac{2}{2.3}+\frac{2}{3.4}+....+\frac{2}{100.101}\right)\)
= \(\frac{1}{2}.2\left(\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{100.101}\right)\)
= 1\(\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{100}-\frac{1}{101}\right)\)
= \(\frac{1}{2}-\frac{1}{101}=\frac{101}{202}-\frac{2}{202}=\frac{99}{202}\)
\(S=\frac{3}{4}-0,25-\left[\frac{7}{3}+\left(\frac{-9}{2}\right)\right]-\frac{5}{6}\)
\(S=\frac{3}{4}-\frac{1}{4}-\left[\frac{14}{6}+\left(\frac{-27}{6}\right)\right]-\frac{5}{6}\)
\(S=\frac{1}{2}-\left(\frac{-13}{6}\right)-\frac{5}{6}\)
\(S=\frac{3}{6}-\left(\frac{-13}{6}\right)-\frac{5}{6}\)
\(S=\frac{11}{6}\)
\(=\frac{1}{2}+-\frac{1}{3}+\frac{1}{4}+\frac{1}{-5}+\frac{1}{6}+-\frac{1}{2}+\frac{1}{3}+\frac{1}{-4}+\frac{1}{5}\)
\(=\left(\frac{1}{2}+-\frac{1}{2}\right)+\left(-\frac{1}{3}+\frac{1}{3}\right)+\left(\frac{1}{4}+\frac{1}{-4}\right)+\left(\frac{1}{-5}+\frac{1}{5}\right)+\frac{1}{6}\)
\(=0+0+0+0+\frac{1}{6}\)
\(=\frac{1}{6}\)
\(\frac{1}{2}+\frac{-1}{3}+\frac{1}{4}+\frac{1}{-5}+\frac{1}{6}+\frac{-1}{2}+\frac{1}{3}+\frac{1}{-4}+\frac{1}{5}\)
\(=\frac{1}{2}+\frac{-1}{3}+\frac{1}{4}+\frac{-1}{5}+\frac{1}{6}+\frac{-1}{2}+\frac{1}{3}+\frac{-1}{4}+\frac{1}{5}\)
\(=\left(\frac{1}{2}-\frac{1}{2}\right)+\left(\frac{1}{3}-\frac{1}{3}\right)+\left(\frac{1}{4}-\frac{1}{4}\right)+\left(\frac{1}{5}-\frac{1}{5}\right)+\frac{1}{6}\)
\(=0+0+0+0+\frac{1}{6}\)
\(=\frac{1}{6}\)
cộng hết tất cả 1/1+2+3+.....+10 thì ta chỉ cần cộng 1+2+3+4+5+6+7+8+9+10 là xong rồi tự tính
\(=\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+...+\frac{2}{30.31}\)
=\(2.\left(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{30.31}\right)\)
=2.\(\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{30}-\frac{1}{31}\right)\)
=\(2.\left(\frac{1}{2}-\frac{1}{31}\right)\)
=2.\(\frac{29}{62}\)
=\(\frac{29}{31}\)