K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 8 2020

* Tự vẽ hình nha:

Xét các tam giác vuông ALI và AKI ta có:

AL2 + LI2 = AI2 = AK2 + KI2

BH2 + IH2 = BI2 = BL2 + LI2

CK2 + KI2 = CI2 = CH2 + IH2

=> AL2 + BH2 + CK2 = AK2 + CH2 + BL2

=> 2(AL2 + BH2 +CK2) = (AL2 + LB2) + (BH2 + HC2) + (CK2 + KA2)

\(\frac{\left(AL+LB\right)^2}{2}+\frac{\left(BH+HC\right)^2}{2}+\frac{\left(CK+KA\right)^2}{2}=\frac{1}{2}\left(AB^2+BC^2+CA^2\right)\)

=> ( AL2 + BH2 + CK2) ≥ \(\frac{1}{4}\)(AB2 + BC2 + CA2)

Vậy minAL2 + BH2 + CK2 \(\frac{1}{4}\)(AB2 + BC2 + CA2)

Dấu " = " xảy ra ⇔ I là tâm đường tròn ngoại tiếp ΔABC

23 tháng 9 2018

https://diendantoanhoc.net/topic/88167-tim-v%E1%BB%8B-tri-c%E1%BB%A7a-i-d%E1%BB%83-al2bh2ck2-nh%E1%BB%8F-nh%E1%BA%A5t/

1) Cho tam giác cân ABC (AB=AC). Trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD=CE. Các đường thẳng vuông góc với BC kẻ từ D và E cắt AB, AC lần lượt ở M,N. DM=EN, đường thẳng BC cắt MN tại trung điểm I của MN. Chứng minh rằng: đường thẳng vuông góc vs MN tại I luôn đi qua một điểm cố định khi D thay đổi trên cạnh BC.2)Cho tam giác ABC vuông tại A, K là trung điểm của...
Đọc tiếp

1) Cho tam giác cân ABC (AB=AC). Trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD=CE. Các đường thẳng vuông góc với BC kẻ từ D và E cắt AB, AC lần lượt ở M,N. DM=EN, đường thẳng BC cắt MN tại trung điểm I của MN. Chứng minh rằng: đường thẳng vuông góc vs MN tại I luôn đi qua một điểm cố định khi D thay đổi trên cạnh BC.

2)Cho tam giác ABC vuông tại A, K là trung điểm của cạnh BC. Qua K kẻ đường thẳng vuông góc vs AK, đường này cắt các đường thẳng AB và AC lần lượt ở D và E. Gọi I là trung điểm của DE.
a)Chứng minh rằng: AI vuông góc vs BC
b) Có thể nói DE nhỏ hơn BC được không? Vì sao?

3) Cho tam giác ABC (AB>AC), M là trung điểm của BC. Đường thẳng đi qua M và vuông góc vs tia phân giác của góc A tại H cắt hai tia AB, AC lần lượt tại E và F. CMR:
a) EF^2/4 +AH^2=AE^2
b) 2BME=ACB-B
c) BE=CF
4)Cho tam giác ABC có góc B và C là 2 góc nhọn. Trên tia đối của tia AB lấy điểm D sao cho AD=AB, trên tia đối của tia AC lấy điểm E sao cho AE=AC. M là trung điểm của BE, N là trung điểm CB. Ax là tia bất kỳ nằm gưac 2 tia AB và AC. Gọi H, K lần lượt là hình chiếu của B và C trên tia Ax. Xác định vị trí của tia Ax để tổng BH+CK có giá trị lớn nhất.

5)Cho tam giác ABC có 3 góc nhọn, đường cao AH, ở miền ngoài của tam giác ABC ta vẽ các tam giác vuông cân ABE và ACF đều nhận A làm đỉnh góc vuông. Kẻ EM, FN cùng vuông
góc vs AH (M,N thuộc AH)
a) CM: EM+HC=NH
b) CM: EN // FM

3
13 tháng 7 2015

bạn đăng từng bài lên 1 đi

mik giải dần cho

30 tháng 1 2017

dễ mà bn