K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 8 2016

Ta có: \(\frac{\left(x^2\right)^2-10x^2+9}{x^4+6x^3+9x^2+2x^3+12x^2+18x+x^2+6x+9}\)

=  \(\frac{\left(x^2-1\right)\left(x^2-3\right)}{x^2\left(x^2+6x+9\right)+2x\left(x^2+6x+9\right)+\left(x^2+6x+9\right)}\)

=  \(\frac{\left(x-1\right)\left(x+1\right)\left(x-3\right)\left(x+3\right)}{\left(x^2+6x+9\right)\left(x^2+2x+1\right)}\)

=  \(\frac{\left(x-1\right)\left(x+1\right)\left(x-3\right)\left(x+3\right)}{\left(x+3\right)^2.\left(x+1\right)^2}\)

=  \(\frac{\left(x-1\right)\left(x+1\right)\left(x-3\right)\left(x+3\right)}{\left(x+3\right)\left(x+3\right)\left(x+1\right)\left(x+1\right)}\)

=  \(\frac{\left(x-1\right)\left(x-3\right)}{\left(x+1\right)\left(x+3\right)}\)

31 tháng 10 2017

Tính chất cơ bản của phân thứcTính chất cơ bản của phân thứcTính chất cơ bản của phân thức

4 tháng 11 2017

\(\dfrac{x^4-10x^2+9}{x^4+8x^3+22x^2+24x+9}\)

\(=\dfrac{x^4-x^2-9x^2+9}{x^4+x^3+7x^3+7x^2+15x^2+15x+9x+9}\)

\(=\dfrac{x^2\left(x^2-1\right)-9\left(x^2-1\right)}{x^3\left(x+1\right)+7x^2\left(x+1\right)+15x\left(x+1\right)+9\left(x+1\right)}\)

\(=\dfrac{\left(x^2-3^2\right)\left(x^2-1\right)}{\left(x+1\right)\left(x^3+7x^2+15x+9\right)}\)

\(=\dfrac{\left(x-3\right)\left(x+3\right)\left(x-1\right)\left(x+1\right)}{\left(x+1\right)\left(x^3+x^2+6x^2+6x+9x+9\right)}\)

= \(\dfrac{\left(x+3\right)\left(x-3\right)\left(x-1\right)\left(x+1\right)}{\left(x+1\right)\left[x^2\left(x+1\right)+6x\left(x+1\right)+9\left(x+1\right)\right]}\)

= \(\dfrac{\left(x+3\right)\left(x-3\right)\left(x-1\right)\left(x+1\right)}{\left(x+1\right)\left(x+1\right)\left(x^2+2.3x+3^2\right)}\)

= \(\dfrac{\left(x-3\right)\left(x-1\right)}{\left(x+1\right)\left(x+3\right)}\)

3 tháng 1 2017

a)B = ( 2 + 4 + 6 + 8 +........+ 2014 ) - ( 3 + 5 + 7 + 9 +.......+ 2011 )

= 1015056 - 1012035

= 3021

Mk nhanh nhất đó 

3 tháng 1 2017

Cảm ơn nha nguyen thi lan huong

19 tháng 7 2017

câu 2

\(...=\sqrt{\left(2-\sqrt{5}\right)^2}-\sqrt{\left(2+\sqrt{5}\right)^2}=\left|2-\sqrt{5}\right|-\left|2+\sqrt{5}\right|=-4\)

câu 1

\(P=\left(\frac{\sqrt{x}}{3+\sqrt{x}}+\frac{x+9}{\left(3-\sqrt{x}\right)\left(3+\sqrt{x}\right)}\right):\left(\frac{3\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-3\right)}-\frac{1}{\sqrt{x}}\right)\)

\(=\left(\frac{\sqrt{x}\left(3-\sqrt{x}\right)+x+9}{\left(3+\sqrt{x}\right)\left(3-\sqrt{x}\right)}\right):\left(\frac{3\sqrt{x}+1-\sqrt{x}+3}{\sqrt{x}\left(\sqrt{x}-3\right)}\right)\)

\(=\frac{3\sqrt{x}+9}{\left(3+\sqrt{x}\right)\left(3-\sqrt{x}\right)}:\frac{2\sqrt{x}+4}{\sqrt{x}\left(\sqrt{x}-3\right)}\)

\(=\frac{3}{\left(3-\sqrt{x}\right)}.\frac{\sqrt{x}\left(\sqrt{x}-3\right)}{2\sqrt{x}+4}=\frac{-3\sqrt{x}}{2\sqrt{x}+4}\)

\(P< -1\Leftrightarrow\frac{-3\sqrt{x}}{2\sqrt{x}+4}+1< 0\Leftrightarrow-\sqrt{x}+4< 0\Leftrightarrow\sqrt{x}>4\Leftrightarrow x>16\)

12 tháng 2 2016

Nếu a+3 là dương

A=3a-3-2.(a+3)+9

A=3a-3-2a+6+9

A=a+12

Nếu a+3 là âm

A=3a-3-2.(-a-3)+9

A=3a-3-(-2).a-6+9

A=5.a+9-6-3

A=5.a

T..i..c..k nha

12 tháng 2 2016

-2*trị tuyệt đối(a+3)+3*a+6

8 tháng 8 2020

Bạn viết biểu thức A ra đi rồi bọn mình mới làm được chứ -.-

8 tháng 8 2020

Đk : \(x\ne\pm3\)

Để B>A

\(\Leftrightarrow\frac{3}{x+3}>4\)

Rõ ràng: \(x+3>0\)

\(\Rightarrow\frac{3}{x+3}>4\)

\(\Leftrightarrow3>4\left(x+3\right)\)

\(\Leftrightarrow3>4x+12\)

\(\Leftrightarrow-9>4x\)

\(\Leftrightarrow x< \frac{-9}{4}\)

KL: \(x\in Z,x< \frac{-9}{4},x\ne\pm3\)

1 tháng 11 2016

tự giải đi em bài này học sinh trường chị biết giải hết đó:v

2 tháng 11 2016

. Đ biết giải mới hỏi chứ =)) Em học ngu lắm =)) 

24 tháng 7 2016

Đặt \(a=\sqrt{x+3}\) , \(b=\sqrt{x-3}\)

Ta có : \(A=\frac{\left(x+3\right)+2\sqrt{\left(x-3\right)\left(x+3\right)}}{2\left(x-3\right)+\sqrt{\left(x-3\right)\left(x+3\right)}}=\frac{a^2+2ab}{2b^2+ab}\)

\(=\frac{a^2+2ab}{2b^2+ab}=\frac{a\left(a+2b\right)}{b\left(a+2b\right)}=\frac{a}{b}=\frac{\sqrt{x+3}}{\sqrt{x-3}}\)

24 tháng 7 2016

giúp mình với

14 tháng 12 2015

\(\frac{2x^4+6x^3+18x^2}{x^4-27x}=\frac{2x^2.\left(x^2+3x+9\right)}{x.\left(x^3-27\right)}\)

\(=\frac{2x^2.\left(x^2+3x+9\right)}{x.\left(x-3\right)\left(x^2+3x+9\right)}=\frac{2x}{x-3}\)