K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 3 2022

Ta có hình vẽ sau đây:

O A B C D M N I K

28 tháng 4 2023

loading...

꧁༺ml78871600༻꧂  
22 tháng 4 2015

c) Tam giác MIB vuông cân tại M nên góc MIB = 450 => góc AIB = 1350, mà AB cố định => I nằm trên cung chứa góc 1350 dựng trên đoạn AB( tính cả 2 đầu A và B)

1: góc AMB=1/2*180=90 độ

góc EMN+góc EDN=180 độ

=>MNDE nội tiếp

2: góc DCB=góc DMB

góc DMB=góc DEN

=>góc DCB=góc DEN

=>BC//NE

1 tháng 9 2019

a, Chú ý:  K M B ^ = 90 0 và K E B ^ = 90 0 => ĐPCM

b, ∆ABE:∆AKM (g.g)

=>  A E A M = A B A K

=> AE.AK = AB.AM = 3 R 2  không đổi

c, ∆OBC đều 

=>  B O C ⏜ = 60 0 => S =  πR 2 6

a: góc AMB=1/2*sđ cung AB=90 độ

góc FEB+góc FMB=180 độ

=>FMBE nội tiếp

b: Xét ΔKAB có

AM,KE là đường cao

KE cắt AM tại F

=>F là trực tâm

=>BF vuông góc AK

BÀI 1 cho tam giác ABC vuông tại A .Nữa đường tròn đường kính AB cắt BC tại D.Trên cung AD lấy một điểm E .Nối BE và kéo dài AC tại F.Chứng minh tứ giác CDEF nội tiếp BÀI 2: Cho đường tròn tâm O đường kính AB cố định ,CD là đường kính thay đổi của đường tròn (O) ( khác AB ) .Tiếp tuyến tại B của (O ) cắt AC và AD lần lượt tại N và M .Chứng minh tứ giác CDMN nội tiếp BÀI 3 :Cho hai đoạn...
Đọc tiếp

BÀI 1 cho tam giác ABC vuông tại A .Nữa đường tròn đường kính AB cắt BC tại D.Trên cung AD lấy một điểm E .Nối BE và kéo dài AC tại F.Chứng minh tứ giác CDEF nội tiếp 

BÀI 2: Cho đường tròn tâm O đường kính AB cố định ,CD là đường kính thay đổi của đường tròn (O) ( khác AB ) .Tiếp tuyến tại B của (O ) cắt AC và AD lần lượt tại N và M .Chứng minh tứ giác CDMN nội tiếp 

BÀI 3 :Cho hai đoạn thẳng MN và PQ cắt nhau tại O .Biết OM.ON= PO.OQ.Chứng minh tứ giác MNPQ nội tiếp 

BÀI 4: Cho tam giác ABC có đường cao AH . Gọi M, N lần lượt là hình chiếu vuông góc của H lên các cạnh AB, AC 
a) c/m AMHN nội tiếp
b) BMNC nội tiếp 

BÀI 5: Cho tam giác ABC các đường phân giác trong là BE và CF cắt nhau tại M và các đường phân giác ngoài của các góc B và góc C cắt nhau tại N .chứng minh BMCN nội tiếp

BÀI 6: Cho đường tròn (O) đường kính AB .Gọi M là một điểm trên tiếp tuyến xBy , đường thẳng AM cắt đường tròn (O) tại C , lấy D thuộc BM, nối AD cắt (O) tại I. c/m CIDM nội tiếp

BÀI 7: Cho đường tròn tâm (O) có cung EH và S là điểm chính giữa cung đó .Trên dây EH lấy hai điểm A và B .Các đường thẳng SA và SB cắt đường tròn lần lượt tại D và C .c/m ABCD là tứ giác nội tiếp

BÀI 8: Cho đường tròn (O) đường kính AB , từ A và B vẽ Ax vuông góc AB và By vuông góc BA (Ax và By cùng phía so với bờ AB ) .Vẽ tiếp tuyến x'My' (tiếp điểm M) cắt Ax tại C và By tại D ; OC cắt AM tại I và OD cắt BM tại K .Chứng minh CIKD nội tiếp

0

a) Xét ΔDAB có

DO là đường trung tuyến ứng với cạnh AB(O là trung điểm của AO)

DO là đường cao ứng với cạnh AB(gt)

Do đó: ΔDAB cân tại D(Định lí tam giác cân)

Suy ra: \(DA=DB\)(hai cạnh bên)

hay \(sđ\stackrel\frown{DA}=sđ\stackrel\frown{DB}\)

Xét (O) có 

\(\widehat{AID}\) là góc nội tiếp chắn cung AD

\(\widehat{BID}\) là góc nội tiếp chắn cung BD

mà \(sđ\stackrel\frown{DA}=sđ\stackrel\frown{DB}\)(cmt)

nên \(\widehat{AID}=\widehat{BID}\)

hay ID là tia phân giác của \(\widehat{AIB}\)(đpcm)

b) Xét (O) có 

\(\widehat{AIB}\) là góc nội tiếp chắn nửa đường tròn

nên \(\widehat{AIB}=90^0\)(Hệ quả góc nội tiếp)

hay \(\widehat{FIB}=90^0\)

Xét tứ giác BIFO có 

\(\widehat{FOB}\) và \(\widehat{FIB}\) là hai góc đối

\(\widehat{FOB}+\widehat{FIB}=180^0\left(90^0+90^0=180^0\right)\)

Do đó: BIFO là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

hay B,I,F,O cùng thuộc 1 đường tròn(đpcm)