Cho hình vuông ABCD. Lấy I\(\in\)AB. DI giao BC tại E. Từ D kẻ DK vuông góc với DI cắt BC tại K. CI giao AE tại M. CMR: BM vuông góc với DE.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có tứ giác ABCD là hình vuông => AB=BC=CD=AD (=a)
Điểm I nằm trên AB => BI = AB - AI = a - x
Theo hệ quae ĐL Thales: \(\frac{BE}{AD}=\frac{BI}{AI}\Rightarrow BE=\frac{BI.AD}{AI}=\frac{\left(a-x\right).a}{x}=\frac{a^2-ax}{x}\)
Tương tự: \(\frac{AP}{BC}=\frac{AI}{BI}\Rightarrow AP=\frac{AI.BC}{BI}=\frac{ax}{a-x}\)
b) Ta thấy: AD // BC hay AD // CE => ^ADI = ^CED
Xét \(\Delta\)ADI và \(\Delta\)CED có: ^IAD = ^DCE (=900) ; ^ADI = ^CED => \(\Delta\)ADI ~ \(\Delta\)CED (g.g) (đpcm).
c) +) Áp dụng hệ quả ĐL Thales: \(\frac{PK}{AK}=\frac{BC}{BE}\). Mà \(\frac{BC}{BE}=\frac{DI}{EI}=\frac{PI}{CI}\)(Do BI//CD; EC//DP)
\(\Rightarrow\frac{PK}{AK}=\frac{PI}{CI}\)\(\Rightarrow\)IK // AC (ĐL Thales đảo) => ^AIK = ^BAC = 450 (So le trong)
Xét \(\Delta\)IAK: ^IAK = 900; ^AIK = 450 => \(\Delta\)IAK vuông cân tại A => AK=AI (đpcm).
+) Ta có IK // AC, AC vuông góc BD => IK vuông góc BD
Xét \(\Delta\)BDK: BI vuông góc DK (tại A); IK vuông góc BD; BI giao IK tại I => I là trực tâm \(\Delta\)BDK
=> DI vuông góc với BK. Hay DF vuông góc BK (đpcm).
Trên tia đối tia AB lấy P sao cho AP = BE
\(\Delta PAD=\Delta EBA\left(c.g.c\right)\)\(\Rightarrow\widehat{PDA}=\widehat{A_1}\)
Mà \(\widehat{D_1}=\widehat{E_1}\)( c/m )
Ta có : \(\widehat{PDE}+\widehat{DEF}=\widehat{PDA}+\widehat{D_1}+\widehat{FED}=\widehat{A_1}+\widehat{E_1}+\widehat{FED}=90^o\)
\(\Rightarrow EF\perp PD\)
Xét \(\Delta PBC\)và \(\Delta ECD\)có :
PB = EC ; \(\widehat{PBC}=\widehat{ECD}\); BC = CD
\(\Rightarrow\Delta PBC=\Delta ECD\left(c.g.c\right)\)
\(\Rightarrow\widehat{CPB}=\widehat{E_1}\)
Ta có : \(\widehat{CPB}+\widehat{PID}=\widehat{E_1}+\widehat{EIB}=90^o\)
\(\Rightarrow CP\perp ED\)
do đó : F là trực tâm \(\Delta EPD\)
\(\Rightarrow DF\perp EP\) ( 1 )
Xét \(\Delta EPC\)có : \(PB\perp EC;EI\perp CP\) nên I là trực tâm \(\Delta EPC\)
\(\Rightarrow CM\perp EP\) ( 2 )
Từ ( 1 ) và ( 2 ) \(\Rightarrow DF//IM\Rightarrow\frac{MI}{FD}=\frac{EI}{ED}=\frac{EM}{EF}\) ( 3 )
\(IB//CD\Rightarrow\frac{EB}{EC}=\frac{EI}{ED}\) ( 4 )
Từ ( 3 ) và ( 4 ) suy ra \(\frac{MI}{FD}=\frac{EB}{EC}\Rightarrow BM//FC\)
\(\Rightarrow BM\perp DE\)
p/s : mệt
b: Xét ΔIAK và ΔIBC có
góc IAK=góc IBC
góc AIK=góc BIC
=>ΔIAK đồng dạng với ΔIBC
=>IK/IC=IA/IB=1/2
=>CI=2/3CK
Xét ΔCAA' có
CK là trung tuyến
CI=2/3CK
=>I là trọng tâm
a)Xét \(\Delta ABD=\Delta IBD\left(ch-gn\right)\Rightarrow AB=BI;AD=DI.\)
b)Xét \(\Delta ABH=\Delta IBH\left(c-g-c\right)\Rightarrow AHB=IHB=90^0\)
Suy ra \(AI\perp BD\)
c)XÉT \(\Delta ADK=\Delta IDC\left(cgv-gnk\right)\Rightarrow KB=DC\)
d) vì \(BD//EI\Rightarrow DBI=BIE;DBI=BEI\)
HAY \(BIE=BEI\Rightarrow\Delta BIE\)CÂN TẠI B
I thuộc AB sao AI cắt BC tại E được?