Giải hpt a) x-2y=5 3x+y=8 b) 1/x+1+2/y-2=3 3/x+1-1/y-2=2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left\{{}\begin{matrix}5x^2+5y^2-6xy=2\\2x^2+3x-2y^2-y=3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}5x^2+5y^2-6xy=2\\4x^2+6x-4y^2-2y=6\end{matrix}\right.\)
\(\Rightarrow9x^2+y^2-6xy+6x-2y+1=9\)
\(\Leftrightarrow\left(3x-y+1\right)^2=9\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-y+1=3\\3x-y+1=-3\end{matrix}\right.\)
Đến đây chia 2 trường hợp và thế vào 1 trong 2 pt để giải
a) \(\left\{{}\begin{matrix}3x-4y=-2\\2x+y=6\end{matrix}\right.\Leftrightarrow}\left\{{}\begin{matrix}3x-4y=-2\\8x+4y=24\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}11x=22\\3x-4y=-2\end{matrix}\right.\Leftrightarrow}\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)
a: =>3x-4y=-2 và 8x+4y=24
=>11x=22 và 2x+y=6
=>x=2 và y=6-2x=6-2*2=2
b: 2x-y=0 và 3x+y=4
=>5x=4 và y=2x
=>x=4/5 và y=8/5
c: x+3y=-2 và x-y=-1
=>4y=-1 và x=y-1
=>y=-1/4 và x=-1/4-1=-5/4
d: x+y=3 và 4x-3y=-2
=>4x+4y=12 và 4x-3y=-2
=>7y=14 và x+y=3
=>y=2 và x=1
Bài 2:
a: \(\Leftrightarrow\left\{{}\begin{matrix}2-x+y-3x-3y=5\\3x-3y+5x+5y=-2\end{matrix}\right.\)
=>-4x-2y=3 và 8x+2y=-2
=>x=1/4; y=-2
b: \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{5}{y-1}=1\\\dfrac{1}{x-2}+\dfrac{1}{y-1}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y-1=5\\\dfrac{1}{x-2}=1-\dfrac{1}{5}=\dfrac{4}{5}\end{matrix}\right.\)
=>y=6 và x-2=5/4
=>x=13/4; y=6
c: =>x+y=24 và 3x+y=78
=>-2x=-54 và x+y=24
=>x=27; y=-3
d: \(\Leftrightarrow\left\{{}\begin{matrix}2\sqrt{x-1}-6\sqrt{y+2}=4\\2\sqrt{x-1}+5\sqrt{y+2}=15\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-11\sqrt{y+2}=-11\\\sqrt{x-1}=2+3\cdot1=5\end{matrix}\right.\)
=>y+2=1 và x-1=25
=>x=26; y=-1
a) ĐKXD: x ≠ 2
\(\dfrac{1}{x-2}+3=\dfrac{3-x}{x-2}\)
\(\Leftrightarrow\dfrac{1}{x-2}-\dfrac{3-x}{x-2}=-3\)
\(\Leftrightarrow\dfrac{1-3+x}{x-2}=-3\)
\(\Leftrightarrow\dfrac{-2+x}{x-2}=-3\)
\(\Leftrightarrow-2+x=-3\left(x-2\right)\)
\(\Leftrightarrow-2+x=-3x+6\)
\(\Leftrightarrow x+3x=6+2\)
\(\Leftrightarrow4x=8\)
\(\Leftrightarrow x=2\) (loại vì không thỏa mãn điều kiện)
Vậy S = ∅
b) ĐKXĐ: x ≠ 7
\(\dfrac{8-x}{x-7}-8=\dfrac{1}{x-7}\)
\(\Leftrightarrow\dfrac{8-x}{x-7}-\dfrac{1}{x-7}=8\)
\(\Leftrightarrow\dfrac{7-x}{x-7}=8\)
\(\Leftrightarrow-1=8\left(vô-lý\right)\)
Vậy S = ∅
P/s: Ko chắc ạ!
c) ĐKXĐ: x ≠ 1
\(\dfrac{1}{x-1}+\dfrac{2x}{x^2+x+1}=\dfrac{3x^2}{x^3-1}\)
Quy đồng và khử mẫu ta được:
\(x^2+x+1+2x\left(x-1\right)=3x^2\)
\(\Leftrightarrow x^2+x+1+2x^2-2x-3x^2=0\)
\(\Leftrightarrow-x+1=0\)
\(\Leftrightarrow x=1\) (loại vì ko t/m đk)
Vậy S = ∅
1) \(3x\left(x-1\right)+5\left(x-1\right)\)
\(=\left(x-1\right)\left(3x+5\right)\)
2) \(4x(x-2y)-8y(2y-x)\)
\(=4x\left(x-2y\right)+8y\left(x-2y\right)\)
\(=\left(4x+8y\right)\left(x-2y\right)\)
\(=4\left(x+2y\right)\left(x-2y\right)\)
3) \(a^2\left(x-1\right)+b^2\left(1-x\right)\)
\(=a^2\left(x-1\right)-b^2\left(x-1\right)\)
\(=\left(a^2-b^2\right)\left(x-1\right)\)
\(=\left(a-b\right)\left(a+b\right)\left(x-1\right)\)
4) \(3x\left(x-a\right)+4a\left(a-x\right)\)
\(=3x\left(x-a\right)-4a\left(x-a\right)\)
\(=\left(x-a\right)\left(3x-4a\right)\)
5) \(5x\left(x-y\right)^2+10y^2\left(y-x\right)^2\)
\(=5x\left(x-y\right)^2+10y^2\left(x-y\right)^2\)
\(=\left(5x+10y^2\right)\left(x-y\right)^2\)
\(=5\left(x+2y^2\right)\left(x-y\right)^2\)
6) \(3x\left(x-3\right)^2+9\left(3-x\right)^2\)
\(=3x\left(x-3\right)^2+9\left(x-3\right)^2\)
\(=\left(3x+9\right)\left(x-3\right)^2\)
\(=3\left(x+3\right)\left(x-3\right)^2\)
7) \(x\left(m-a\right)^2-y\left(a-m\right)^2\)
\(=x\left(a-m\right)^2-y\left(a-m\right)^2\)
\(=\left(x-y\right)\left(a-m\right)^2\)
8) \(6y^2\left(x-1\right)^2+9y\left(1-x\right)^2\)
\(=6y^2\left(x-1\right)^2+9y\left(x-1\right)^2\)
\(=\left(6y^2+9x\right)\left(x-1\right)^2\)
\(=3\left(2y^2+3x\right)\left(x-1\right)^2\)
#Ayumu
Ta có hpt \(\left\{{}\begin{matrix}xy+3y-5x-15=xy\\2xy+30x-y^2-15y=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}5x=3y-15\\6\left(3y-15\right)-y^2-15y=0\end{matrix}\right.\)
Ta có pt (2) \(\Leftrightarrow3y-y^2-80=0\Leftrightarrow y^2-3y+80=0\left(VN\right)\)
=> hpy vô nghiệm
c) Ta có hpt \(\Leftrightarrow\left\{{}\begin{matrix}xy\left(x+y\right)\left(xy+x+y\right)=30\\xy\left(x+y\right)+xy+x+y=11\end{matrix}\right.\)
Đặt j\(xy\left(x+y\right)=a;xy+x+y=b\), ta có hpt
\(\left\{{}\begin{matrix}ab=30\\a+b=11\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}a=5;b=6\\a=6;b=5\end{matrix}\right.\)
với a=5;b=6, ta có \(\left\{{}\begin{matrix}xy\left(x+y\right)=5\\xy+x+y=6\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}xy=1;x+y=5\\xy=5;x+y=1\end{matrix}\right.\)
đến đây thì thế y hoặc x ra pt bậc 2, còn TH còn lại bn tự giải nhé !
a: x-2y=5 và 3x+y=8
=>3x-6y=15 và 3x+y=8
=>-7y=7 và x-2y=5
=>y=-1 và x=5+2y=5-2=3
b: \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{3}{x+1}+\dfrac{6}{y-2}=9\\\dfrac{3}{x+1}-\dfrac{1}{y-2}=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{7}{y-2}=7\\\dfrac{1}{x+1}+\dfrac{2}{y-2}=3\end{matrix}\right.\)
=>y-2=1 và x+1=1
=>x=0 và y=3