tìm 2 số tự nhiên A và B biết :BCNN + UCLN = 19
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi d là \(ƯCLN\left(a,b\right)\)
ta gọi \(a=d\cdot m;b=d\cdot n\)với\(\left(m;n\right)=1\)
ta có : \(BCNN\left(a,b\right)=a\cdot b\)
\(ƯCLN\left(a,b\right)=d\cdot m\cdot d\cdot n\)
\(d=m\cdot n\cdot d\)
do \(BCNN\left(a,b\right)+ƯCLN\left(a,b\right)=19\)
\(\Rightarrow m\cdot n\cdot d+d=19\)
\(\Rightarrow d\cdot\left(m\cdot n+1\right)=19\)
do \(m\cdot n+1>1\)và \(19=19\cdot1\)
\(\Rightarrow a=\left\{1;2\right\}\)
\(b=\left\{9;18\right\}\)
Ta có:BCNN và ƯCNN của cùng 2 số luôn chia hết cho nhau
=> 19\(⋮\)ƯCLN(a,b)
Mà:ƯCLN của 2 số luôn luôn dương
=>ƯCLN(a,b)=1
Xét ƯCLN(a,b)=1
=>a và b là 2 số nguyên tố cùng nhau và có BCLN là 18 .
Có:
18 = 2.32
\(\Rightarrow\orbr{\begin{cases}a=2;b=3^2\Leftrightarrow a=2;b=9\\a=3^2;b=2\Leftrightarrow a=9;b=2\end{cases}}\)
Vậy nếu: a=2 thì b=9
a=9 thì b=2
@Sorou@ a<b.Câu hỏi của Võ Nguyễn Anh Quân - Toán lớp 6 - Học toán với OnlineMath
Ta có: BCNN ( a; b ) \(⋮\)UCLN ( a; b )
và UCLN ( a; b ) \(⋮\)UCLN ( a; b )
=> BCNN( a; b ) + UCLN ( a; b ) \(⋮\)UCLN ( a; b )
=> 19 \(⋮\)UCLN ( a; b )
=> UCLN ( a; b ) = 1 hoặc UCLN (a; b ) = 19 ( loại)
=> BCNN ( a; b ) = 18 = \(3^2.2.1\)
Vì a < b và (a; b ) = 1.
Nên xảy ra 2TH:
TH1: a = 1, b = 18 (tm)
TH2: a = 2 , b = 9 (tm)
Kết luận: a = 1; b = 18 hoặc a = 2; b =9.
Vì \(BCNN\left(a,b\right)=300\) và \(ƯCLN\left(a,b\right)=15\)
\(\Leftrightarrow a.b=300.15=4500\)
Vì \(ƯCLN\left(a,b\right)=15\) nên \(a=15m\) và \(b=15n\) với \(ƯCLN=\left(m,n\right)=1\)
Vì \(a+15=b\Rightarrow15m+15=15n\Rightarrow15\left(m+1\right)=15n\)
\(\Leftrightarrow m+1=n\)
Mà \(a.b=4500\Rightarrow15m.15n=4500\Rightarrow15.15.m.n=4500\)
\(\Leftrightarrow m.n=20\)
\(\Leftrightarrow m=1\) và \(n=20\) hoặc \(m=4\) và \(n=5\)
Tham khảo đề bài và đáp án.Câu hỏi của Võ Nguyễn Anh Quân - Toán lớp 6 - Học toán với OnlineMath