Tìm giá trị nhỏ nhất của biểu thức:
E = (x-1)(x+2)(x+3)(x+6)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(x-1\right)^2+8\ge8\\ A_{min}=8\Leftrightarrow x=1\\ B=\left(x+3\right)^2-12\ge-12\\ B_{min}=-12\Leftrightarrow x=-3\\ C=x^2-4x+3+9=\left(x-2\right)^2+8\ge8\\ C_{min}=8\Leftrightarrow x=2\\ E=-\left(x+2\right)^2+11\le11\\ E_{max}=11\Leftrightarrow x=-2\\ F=9-4x^2\le9\\ F_{max}=9\Leftrightarrow x=0\)
1:
a: \(A=2+3\sqrt{x^2+1}>=3\cdot1+2=5\)
Dấu = xảy ra khi x=0
b: \(B=\sqrt{x+8}-7>=-7\)
Dấu = xảy ra khi x=-8
\(B=\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)\)
\(=\left(x-1\right)\left(x+6\right)\left(x+2\right)\left(x+3\right)\)
\(=\left(x^2+5x-6\right)\left(x^2+5x+6\right)\)
\(=\left(x^2+5x\right)^2-6^2\)
\(\left(x^2+5x\right)^2-36\)
Vì \(\left(x^2+5x\right)^2\ge0\Rightarrow\left(x^2+5x\right)^2-36\ge-36\)
Vậy GTNN của B là -36
1:
ĐKXĐ: \(x\notin\left\{3;-2;1\right\}\)
\(A=\left(\dfrac{x\left(x+2\right)-x+1}{\left(x-3\right)\left(x+2\right)}\right):\left(\dfrac{x\left(x-3\right)+5x+1}{\left(x+2\right)\left(x-3\right)}\right)\)
\(=\dfrac{x^2+2x-x+1}{\left(x-3\right)\left(x+2\right)}\cdot\dfrac{\left(x+2\right)\left(x-3\right)}{x^2-3x+5x+1}\)
\(=\dfrac{x^2+x+1}{\left(x-1\right)^2}\)
(x-1) (x+2) (x+3) (x+6)
= [(x-1) (x+6)] . [(x+2) (x+3)]
=(x^2 +5x -6) (x^2+5x+6)
=(x^2+5x)^2 - 6^2 = (x^2+5x)^2 - 36
Vì (x^2+5x)^2 > hoặc bằng 0 => (x-1)(x+2)(x+3)(x+6) > hoặc bằng - 36.
Dấu bằng xảy ra khi (x^2+5x)^2=0 <=> x=0 hoặc x=-5
A = (x-1)(x+2)(x+3)(x+6)
= (x-1)(x+6)(x+3)(x+2)
= (x² + 5x - 6)(x² + 5x + 6)
Đặt x² + 5x = a => A= (a - 6)(a + 6) = a² - 36 ≥ -36
Dấu = xảy ra <=> a = 0 <=> x² + 5x = 0 <=> x = 0 hoặc x = -5
Vậy min A = -36 <=> x = 0 hoặc x = -5
1, Ta có: 3-x2+2x=-(x2-2x+1)+4=-(x-1)2+4
vì (x-1)2 luôn lớn hơn hoặc bằng không với mọi x-->-(x-1)2 nhỏ hơn hoặc bằng 0 với mọi x
vậy giá trị lớn nhất của biểu thức 3-x2+2x là 4
các bài giá trị nhỏ nhất còn lại làm tương tự bạn nhé
chỉ cần đưa về nhân tử chung hoặc hằng đẳng thức là được
E = (x-1)(x+2)(x+3)(x+6)
Để E nhỏ nhất thì tích E phải có lẻ thừa số âm
(x-1)<(x+2)<(x+3)<(x+6)
\(\Rightarrow\hept{\begin{cases}x-1< 0\\x+2>0\end{cases}\Rightarrow\hept{\begin{cases}x< 1\\x>-2\end{cases}\Leftrightarrow}-2< x< 1.}\)
Hoặc
\(\hept{\begin{cases}x+3< 0\\x+6>0\end{cases}\Rightarrow\hept{\begin{cases}x< -3\\x>-6\end{cases}\Leftrightarrow}-3< x< -6.}\)