Cho tam giác nhọn ABC, đường cao AH . lấy các điểm E và F sao cho AB là đường trung trực của HE . AC là đường trung trực của HF. EF cắt AB tại M , cắt AC tại N . Chứng minh rằng MC//EH
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b, kẻ AO // BC
góc OAK so le trong KFB
=> góc OAK = góc KFB (tc)
xét tam giác AOK và tam giác BMK có : AK = KM (do ...)
góc AKO = góc MBK (đối đỉnh)
=> tam giác AOK = tam giác BMK (g-c-g)=
=> AO = MB (đn)
có AO // BC mà góc EOA đồng vị EMC
=> góc EOA = góc EMC (tc) (1)
gọi EF cắt tia phân giác của góc BCA tại T
EF _|_ CT (gt)
=> tam giác ETC vuông tại T và tam giác CTF vuông tại T
=> góc CET = 90 - góc ECT và góc TMC = 90 - góc TCM
có có TCM = góc ECT do CT là phân giác của góc ACB (gt)
=> góc CET = góc TMC và (1)
=> góc AEO = góc AOE
=> tam giác AEO cân tại A (tc)
=> AE = AO mà AO = BM
=> AE = BM
a, MB = MN (gt)
M nằm giữa N và B
=> M là trung điểm của NP (đn)
NI // AB (gt); xét tam giác ANB
=> I là trung điểm của AN (đl)
b,
a: Xét ΔCDB có
CA là trung tuyến
CG=2/3CA
=>G là trọng tâm
=>E là trung điểm của BC
b: Xét tứ giác DFCE có
DF//CE
DE//CF
=>DFCE là hình bình hành
=>DC cắt FE tại trung điểm của mỗi đường
=>M là trung điểm của BC và EF
c: G là trọng tâm của ΔDBC
M là trung điểm của DC
=>B,G,M thẳng hàng