CMR 1/31+1/32+.....+1/150<13/6
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=1/31+1/32+...+1/149+1/150
1/31<1/30
1/32<1/30
...
1/40<1/30
1/41<1/40
1/42<1/40
...
1/50<1/40
...
1/140<1/130
1/141<1/140
...
1/150<1/140
=>A<10(1/30+1/40+...+1/140)
=>A<1/3+1/4+...+1/14=1,75<13/6
\(S=\frac{1}{31}+\frac{1}{32}+\frac{1}{33}+...+\frac{1}{60}\)
\(=\left(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{40}\right)+\left(\frac{1}{41}+...+\frac{1}{50}\right)+\left(\frac{1}{51}+...+\frac{1}{60}\right)\)
\(< \left(\frac{1}{30}+\frac{1}{30}+...+\frac{1}{30}\right)+\left(\frac{1}{40}+...+\frac{1}{40}\right)+\left(\frac{1}{50}+...+\frac{1}{50}\right)\)
\(=\frac{10}{30}+\frac{10}{40}+\frac{10}{50}=\frac{1}{3}+\frac{1}{4}+\frac{1}{5}=\frac{47}{60}< \frac{48}{60}=\frac{4}{5}\)
S = (1/31+1/32+1/33+...+1/40) + (1/41 + 1/42 + ...+ 1/50) + (1/51 + 1/52+...+1/59+1/60)
Mà : (1/31+1/32+1/33+...+1/40) > 1/40 x 10 = 1/4 (gồm 10 số hạng)
Tương tự : (1/41 + 1/42 + ...+ 1/50) > 1/5 ; (1/51 + 1/52+...+1/59+1/60) > 1/6
S > 1/4 + 1/5 + 1/6.
Trong khi đó (1/4 + 1/5 + 1/6) > 3/5
=>S > 3/5 (1)
S = (1/31+1/32+1/33+...+1/40) + (1/41 + 1/42 + ...+ 1/50) + (1/51 + 1/52+...+1/59+1/60)
Mà : (1/31+1/32+1/33+...+1/40) < 1/31 x 10 = 10/30 = 1/3 (gồm 10 số hạng)
=> S < 4/5 (2)
Từ (1) và (2) => 3/5 <S<4/5
A = 1/31 + 1/32 + ... + 1/60
A = (1/31 + 1/32 + ... + 1/40) + (1/41 + 1/42 + ... + 50) + (1/51 + 1/52 + ... + 1/60)
A > 1/40 × 10 + 1/50 × 10 + 1/60 × 10
A > 1/4 + 1/5 + 1/6
A > 1/4 + 1/6 + 1/6
A > 1/4 + 1/3
A > 7/12