So sanh:
B= \(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}.....1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cho\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}\) va a+b+c khac 0
a] so sanh ac so a,b,c
cho a=2017. tinh b,c
Theo tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)
\(\Rightarrow\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}\Leftrightarrow a=b=c}\)
a=b=c=2017
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)
\(\frac{a}{b}=1\Rightarrow a=b\); \(\frac{b}{c}=1\Rightarrow b=c\); \(\frac{c}{a}=1\Rightarrow c=a\)
Suy ra : a = b = c = 1
Nếu a = 2017 thì : b = c = 2017
a+n/b+n=a/b
vì +n/+n hết chỉ còn a/b thôi nên bằng
CHÚC BẠN HỌC GIỎI
K MÌNH NHÉ
Thêm đk \(a,b,c\ne0\)
Ta có: \(\frac{ab}{a+b}=\frac{1}{3}\Rightarrow\frac{a+b}{ab}=3\)
\(\frac{bc}{b+c}=\frac{1}{4}\Rightarrow\frac{bc}{b+c}=4\)
\(\frac{ca}{c+a}=\frac{1}{5}\Rightarrow\frac{c+a}{ca}=5\)
\(\Rightarrow\frac{a+b}{ab}+\frac{b+c}{bc}+\frac{c+a}{ca}=12\)
\(\Leftrightarrow\frac{1}{b}+\frac{1}{a}+\frac{1}{c}+\frac{1}{b}+\frac{1}{a}+\frac{1}{c}=12\)
\(\Leftrightarrow2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=12\)
\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=6\)
Đặt \(\left(\frac{a}{b};\frac{c}{b}\right)=\left(x;y\right)\) ta có \(\frac{1}{x}+\frac{1}{y}=2\)
\(\frac{a+b}{2a-b}+\frac{c+b}{2c-b}=\frac{\frac{a}{b}+1}{\frac{2a}{b}-1}+\frac{\frac{c}{b}+1}{\frac{2c}{b}-1}=\frac{x+1}{2x-1}+\frac{y+1}{2y-1}\)
\(=1+\frac{3}{2}\left(\frac{1}{2x-1}+\frac{1}{2y-1}\right)=1+\frac{3}{2}.\frac{2x+2y-2}{4xy-2\left(x+y\right)+1}=1+3.\frac{x+y-1}{1}\ge4\)
Do \(\frac{1}{x}+\frac{1}{y}=2\Rightarrow x+y\ge2\)
đpcm
Bài 1 :
\(A=\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+...+\frac{50-49}{49.50}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)
\(=1-\frac{1}{50}< 1\left(1\right)\)
\(B=\frac{1}{10}+\left(\frac{1}{11}+\frac{1}{12}+...+\frac{1}{99}+\frac{1}{100}\right)\)\(>\frac{1}{10}+\frac{1}{100}.90=1\left(2\right)\)
Từ (1) và ( 2) ta có \(A< 1\) \(B>1\)NÊN \(A< B\)
Bài 2:
\(S=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)
\(=\frac{\left(a+b+c\right)-\left(b+c\right)}{b+c}+\)\(\frac{\left(a+b+c\right)-\left(c+a\right)}{c+a}\)\(+\frac{\left(a+b+c\right)-\left(a+b\right)}{a+b}\)
\(=\frac{7-\left(b+c\right)}{b+c}+\frac{7-\left(c+a\right)}{c+a}+\frac{7-\left(a+b\right)}{a+b}\)
\(=7.\left(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}\right)-3\)
\(=7.\frac{7}{10}-3\)\(=\frac{49}{10}-3=\frac{19}{10}\)
\(S=\frac{19}{10}>\frac{19}{11}=1\frac{8}{11}\)
Chúc bạn học tốt ( -_- )
Bài 1:
ta có: \(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)
\(A=1-\frac{1}{50}< 1\)
\(\Rightarrow A< 1\)(1)
ta có: \(\frac{1}{11}>\frac{1}{100};\frac{1}{12}>\frac{1}{100};...;\frac{1}{99}>\frac{1}{100}\)
\(\Rightarrow\frac{1}{11}+\frac{1}{12}+...+\frac{1}{99}+\frac{1}{100}>\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}+\frac{1}{100}\) ( có 90 số 1/100)
\(=\frac{90}{100}=\frac{9}{10}\)
\(\Rightarrow B=\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+...+\frac{1}{99}+\frac{1}{100}>\frac{1}{10}+\frac{9}{10}=1\)
\(\Rightarrow B>1\)(2)
Từ (1);(2) => A<B
\(S=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=\frac{7-\left(b+c\right)}{b+c}+\frac{7-\left(c+a\right)}{c+a}+\frac{7-\left(a+b\right)}{a+b}\)
\(=\frac{7}{b+c}-\frac{b+c}{b+c}+\frac{7}{c+a}-\frac{c+a}{c+a}+\frac{7}{a+b}-\frac{a+b}{a+b}\)
\(=\frac{7}{b+c}-1+\frac{7}{c+a}-1+\frac{7}{a+b}-1\)
\(=\frac{7}{b+c}+\frac{7}{c+a}+\frac{7}{a+b}-3\)
\(=7.\left(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}\right)-3\) \(.Thay\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}=\frac{7}{10}\)
\(\Rightarrow S=7.\frac{7}{10}-3=\frac{49}{10}-3=1\frac{9}{10}>1\frac{8}{11}\)
Vậy\(S>1\frac{8}{11}\)
B = a/a+b + b/b+c + c/c+a
B > a/a+b+c + b/a+b+c + c/a+b+c
B > a+b+c/a+b+c
B > 1