cho tam giác ABC đường cao AH gọi E là hình chiếu của H trên AC chứng minh AH là trung trực EF b,trên tia đối EH và FH lấy M và N sao cho EM =EH , FH=FM CM tam giác AMN cân mau lên các bạn nhé
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì tam giác ABC cân tại A nên \(\Delta AHB=\Delta AHC\left(g-c-g\right)\Rightarrow HE=HF;AE=AF\)
a.Xét tam giác AEH và tam giác AFH có \(\hept{\begin{cases}HE=HF;AE=AF\left(cmt\right)\\\widehat{E}=\widehat{F}=90^0\end{cases}\Rightarrow\Delta AEH=\Delta AFH}\left(c-g-c\right)\)
b. Có \(AE=AF\Rightarrow\Delta AEF\)cân tại A
Mà \(EF\)song song với BC \(\Rightarrow AH⊥EF\)
Ta có tam giác AEF cân tại A nên có AH vừa là đường cao vừa là đường trung trực
c. Ta có \(HE=HF\)mà \(\hept{\begin{cases}EH=EM\\FH=FN\end{cases}}\)\(\Rightarrow EM=FN\)
Xét tam giác AEM và tam giác AFN có \(\hept{\begin{cases}AE=AF\\\widehat{E}=\widehat{F}=90^0\\EM=FN\end{cases}}\Rightarrow\Delta AEM=\Delta AFN\left(c-g-c\right)\)
\(\Rightarrow AM=AN\Rightarrow\Delta AMN\)cân tại A
a, Xét t giác ABC cân tại A có AH là đường cao
=> AH là đường phân giác
=> góc EAH= góc FAH
xét Δ AEH và Δ AFH có
góc AEH= góc AFH = 90 độ
góc EAH= góc FAH
chung AH
=> Δ AEH = Δ AFH ( cạnh huyền - góc nhọn)
b, Xét Δ AEH = Δ AFH=> AE= AF
xét Δ AEF có AE= AF => Δ AEF cân tại A
Xét Δ AEF cân tại A có AH là đường phân giác
=> AH cũng là trung trực
=> AH là trung trực của EF (đpcm)
c, có ME= EH=> E là tđ của MH
Có AE ⊥ MH tại tđ E của MH
=> AE là trung trực của MH
=> AM= AH (1)
có FH= FN=> F là tđ của HN
Có AF ⊥ HN tại tđ F của HN
=> AF là trung trực của HN
=> AH= AN (2)
Từ (1) và (2) => AM= AN
=> Δ AMN cân tại A
a: Xét ΔAEH vuông tại E và ΔAFH vuông tại F có
AH chung
góc EAH=góc FAH
Do đó: ΔAEH=ΔAFH
b: Ta có: AE=AF
HE=HF
Do đó: AH là đường trung trực của FE
c: Xét ΔAHM có
AE là đường cao
AE là đường trung tuyến
Do đo ΔAHM can tại A
=>AH=AM(1)
Xét ΔAHN có
AF là đường cao
AF là đường trung tuyến
Do đó: ΔAHN cân tại A
=>AH=AN(2)
Từ (1) và (2) suy ra AM=AN
"trên tia đối của tia EH lấy điểm P ..." bài này có sai đề không nhỉ, không thể tồn tại hai điểm P, Q thì làm sao vẽ hình được e
a: Xét ΔAEH vuông tại E và ΔAFH vuông tại F có
AH chung
\(\widehat{EAH}=\widehat{FAH}\)
Do đó: ΔAEH=ΔAFH
b: ta có;ΔAEH=ΔAFH
nên AE=AF và HE=HF
=>AH là đường trung trực của HF
c: Xét ΔAHM có
AE là đường cao
AE là đường trung tuyến
Do đó ΔAHM cân tại A
=>AM=AH(1)
Xét ΔAHN có
AF là đường cao
AF là đường trung tuyến
Do đó: ΔAHN cân tại A
=>AH=AN(2)
Từ (1) và (2) suy ra AM=AN
hay ΔAMN cân tại A