2+6+7+y=45
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
* a mũ 2 hay 4 hay 6 ,... ( những số tự nhiên chẵn khác 0 ) đều lớn hơn hoặc bằng 0 với mọi a
Áp dụng :
a) (2x-8)^4 + (3y+45)^2 = 0
Vì : (2x-8)^4 >=0 , (3y+45)^2 >=0 với mọi x,y
=> (2x-8)^4 + (3y+45)^2 >=0
Dấu "=" xảy ra khi : 2x-8=3y+45=0
->(x;y)=(4;-15)
Những câu sau làm tương tự, ta được :
b) ...
Dấu "=" xảy ra khi : 2x-10=0 và x+y-7=0
->x=5 và 5+y-7=0
->(x;y)=(5;2)
c) 5x-15=0 và 2x-y+4=0
->x=3 và 6-y+4=0
->(x;y)=(3;10)
d) Trùng câu a
phép tính như vậy và hỏi
nó chỉ đành cho mấy đứa ngu như mi thôi THV
a) \(x^2-2xy-4z^2+y^2=\left(x-y\right)^2-4z^2=\left(x-y-2z\right)\left(x-y+2z\right)=\left(6+4-2.45\right)\left(6+4+2.45\right)=-8000\)b) \(3\left(x-3\right)\left(x+7\right)+\left(x-4\right)^2+48=3\left(x^2+4x-21\right)+\left(x^2-8x+16\right)+48=4x^2+4x+1=\left(2x+1\right)^2=\left(2.0,5+1\right)^2=4\)
a: Ta có: \(x^2-2xy+y^2-4z^2\)
\(=\left(x-y\right)^2-\left(2z\right)^2\)
\(=\left(x-y-2z\right)\left(x-y+2z\right)\)
\(=\left(6+4-2\cdot45\right)\left(6+4+2\cdot45\right)\)
\(=-8000\)
b: Ta có: \(3\left(x-3\right)\left(x+7\right)+\left(x-4\right)^2+48\)
\(=3\left(x^2+4x-21\right)+\left(x-4\right)^2+48\)
\(=3x^2+12x-63+x^2-8x+16+48\)
\(=2x^2+4x+1\)
\(=2\cdot\dfrac{1}{4}+4\cdot\dfrac{1}{2}+1\)
\(=\dfrac{7}{2}\)
a)\(\sqrt{\frac{3a}{7}}-2\sqrt{\frac{7a}{3}}+\sqrt{21a}\) =\(\sqrt{\frac{3}{7}.\frac{1}{21}.21a}\) - \(2\sqrt{\frac{7}{3}.\frac{1}{21}.21a}\)+ \(\sqrt{21}\)
=\(\sqrt{\frac{1}{49}.21a}\) - \(2\sqrt{\frac{1}{9}.21a}\)+\(\sqrt{21}\)
=\(\sqrt{\frac{1}{49}}.\sqrt{21a}\) - \(2.\sqrt{\frac{1}{9}}.\sqrt{21a}\)+ \(\sqrt{21a}\)
=\(\frac{1}{7}\sqrt{21a}\) - \(\frac{2}{3}\sqrt{21a}\) + \(\sqrt{21a}\)
=\(\frac{-10}{21}\sqrt{21a}\)
b)
N=\(\sqrt{\frac{8x}{3}}\) - \(\sqrt{\frac{27x}{2}}\) + \(\sqrt{6x}\)
=\(\sqrt{\frac{8}{3}.\frac{1}{6}.6x}\) - \(\sqrt{\frac{27}{2}.\frac{1}{6}.6x}\)+ \(\sqrt{6x}\)
=\(\frac{2}{3}\sqrt{6x}-\frac{3}{2}.\sqrt{6x}+\sqrt{6x}\)
=\(\frac{1}{6}\sqrt{6x}\)
em lớp 8 nene làm theo cách hiểu thôi ạ
a: \(=\dfrac{-2}{12}-\dfrac{5}{12}+\dfrac{7}{12}=0\)
b: \(=\left(\dfrac{4}{45}-\dfrac{1}{45}+\dfrac{7}{45}+\dfrac{4}{45}-\dfrac{2}{45}-\dfrac{9}{45}\right)=\dfrac{3}{45}=\dfrac{1}{15}\)
\(x+y+z=2\sqrt{x-34}+4\sqrt{y-21}+6\sqrt{z-4}+45\)
ĐK: \(x\ge34;y\ge21;z\ge4\)
\(pt\Leftrightarrow x-34-2\sqrt{x-34}+1+y-21-4\sqrt{y-21}+4+z-4-6\sqrt{z-4}+9=0\)
\(\Leftrightarrow\left(\sqrt{x-34}-1\right)^2+\left(\sqrt{y-21}-2\right)^2+\left(\sqrt{z-4}-3\right)^2=0\left(1\right)\)
Dễ Thấy: \(VT_{\left(1\right)}\ge0\) nên dấu "=" khi
\(\hept{\begin{cases}\sqrt{x-34}=1\\\sqrt{y-21}=2\\\sqrt{z-4}=3\end{cases}}\)
Giải tiếp rồi thay vào T
\(\left(\dfrac{3}{7}\right)^2\cdot\left(-7\right)^4=\dfrac{9}{49}\cdot49^2=9\cdot49=441\)
\(\left(-11\right)^{12}\cdot\left(\dfrac{4}{11}\right)^4=11^{12}\cdot\dfrac{4^4}{11^4}=11^8\cdot4^4=54875873536\)
\(\left(-6\right)^8\cdot\left(\dfrac{5}{6}\right)^7=6^8\cdot\dfrac{5^7}{6^7}=6\cdot5^7=469750\)
4) \(\left(\dfrac{3}{7}\right)^2\cdot\left(-7\right)^4\)
\(=\left(\dfrac{3}{7}\right)^2\cdot\left[\left(-7\right)^2\right]^2\)
\(=\left(\dfrac{3}{7}\right)^2\cdot49^2\)
\(=\left(\dfrac{3}{7}\cdot49\right)^2\)
\(=\left(\dfrac{147}{7}\right)^2\)
\(=21^2\)
\(=441\)
5) \(\left(-11\right)^{12}\cdot\left(\dfrac{4}{11}\right)^6\)
\(=\left[\left(-11\right)^2\right]^6\cdot\left(\dfrac{4}{11}\right)^6\)
\(=121^6\cdot\left(\dfrac{4}{11}\right)^6\)
\(=\left(121\cdot\dfrac{4}{11}\right)^6\)
\(=44^6\)
6) \(6^8\cdot\left(\dfrac{5}{7}\right)^7\)
\(=6^8\cdot\dfrac{5^7}{6^7}\)
\(=\dfrac{6^8\cdot5^7}{6^7}\)
\(=6\cdot5^7\)
\(=469750\)
y = 45 - 2 - 6 -7
y = 30
k hộ ạ
y=30 bạn nhé