K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: góc MDN=góc MHN=90 độ

=>MDHN nội tiếp

b: góc EMD=góc MNE

góc HMD=góc HND

mà góc MNE=góc HND

nên góc EMD=góc HMD

=>MD là phân giác của góc HME

 

27 tháng 4 2022

a, Áp dụng tính chất đường vuông góc và đường xiên 

Ta có : NM là hình chiếu của MQ

=> NM⊥MQ => NM<NE

b, Xét △MNE và △QNE

Ta có : \(N_1=N_2\)

           BC cạnh chung

           góc M = góc H = 90 độ

=> △MNE = △QNE (g.c.g)

c, Vì △MNE = △HNE => MN = HN ; EM = EH

=> NE là đường trung trực của MH M N Q H E 1 2

a: góc FEQ=góc FMQ=90 độ

=>FMEQ nội tiếp

Tam I là trung điểm của FQ

3 tháng 8 2017

ta có:\(\tan Q=\frac{MN}{MQ}=\frac{5}{6}\)

\(\Rightarrow Q=40^0\)

ta có N=\(90^0\)-Q=\(90^0-40^0=50^0\)

áp dụng hệ về cạnh và góc trong tam giác vuông ta có:

\(MN=NQ\times\sin Q\)

\(\approx7,779cm\)

b,áp dụng hệ về cạnh và đường cao trong tam giác vuông có:

1, MH x NQ=MN x MQ

\(\Rightarrow MH=3,85\)

2, \(NH\times NQ=MN^2\)

\(\Rightarrow NH\approx3,214cm\)

ta có:HN=NQ-HQ

\(\Rightarrow\)HQ\(\approx\)4,565cm

c, vì tứ giác MKHE có:

gocsM = gócMKA = gocsMEA=\(90^0\)

\(\Rightarrow\)tứ giác MKHE là hình chữ nhật

áp dụng hệ thức cạnh và góc trong tam giác vuông có:

1, \(EH=NH\times\sin ENH\)

\(\Rightarrow EH\approx2,067cm\)

2, \(HK=HQ\times\sin KQH\)

\(\Rightarrow HK\approx3,497cm\)

\(\Rightarrow S_{MEHK}=7,228cm^2\)

                                                                                   xong rồi k mình nha

11 tháng 10 2021

Áp dụng HTL trong tam giác MNQ vuông tại Q:

\(MQ^2=QH.QN\)

\(\Rightarrow QH=\dfrac{MQ^2}{QN}=\dfrac{12^2}{20}=7,2\)

Áp dụng đ/lý Pytago:

\(QN^2=MN^2+MQ^2\)

\(\Rightarrow MN=\sqrt{QN^2-MQ^2}=\sqrt{20^2-12^2}=16\)

Áp dụng HTL:

\(MN^2=NH.QN\)

\(\Rightarrow NH=\dfrac{MN^2}{QN}=\dfrac{16^2}{20}=12,8\)

a: Xét ΔNKH vuông tại K và ΔNMQ vuông tại M có

\(\widehat{N}\) chung

Do đó: ΔNKH~ΔNMQ

b: Xét ΔQMN có

H là trung điểm của QN

HK//QM

Do đó: K là trung điểm của MN

Xét ΔQMN có

H là trung điểm của QN

HE//MN

Do đó: E là trung điểm của QM

Xét tứ giác MKHE có \(\widehat{MKH}=\widehat{MEH}=\widehat{EMK}=90^0\)

nên MKHE là hình chữ nhật

=>HK=EM và MK=EH

ta có: HK=EM

EM=EQ

Do đó: HK=EM=EQ

Ta có: MK=EH

MK=KN

Do đó: EH=MK=KN

Xét ΔEMK vuông tại M và ΔHKN vuông tại K có

EM=HK

MK=KN

Do đó: ΔEMK=ΔHKN

=>ΔEMK~ΔHKN

 

DD
20 tháng 6 2021

\(NP=4,5+6=10,5\left(cm\right)\)

Áp dụng tích chất đường phân giác: 

\(\frac{MN}{NE}=\frac{MP}{EP}\Leftrightarrow\frac{MN}{4,5}=\frac{MP}{6}\Leftrightarrow MN=\frac{3}{4}MP\).

Áp dụng định lí Pythagore:

\(NP^2=MP^2+MN^2\)

\(\Leftrightarrow10,5^2=MP^2+\left(\frac{3}{4}MP\right)^2\Leftrightarrow MP=8,4\Rightarrow MN=6,3\)

\(MH=\frac{MN.MP}{NP}=\frac{8,4.6,3}{10,5}=5,04\)

\(NH=\frac{MN^2}{NP}=\frac{6,3^2}{10,5}=3,78\)

\(HE=NE-NH=4,5-3,78=0,72\)

\(S_{MHE}=\frac{1}{2}.MH.HE=\frac{1}{2}.0,72.5,04=1,8144\left(cm^2\right)\)