Tìm GTNN, GTLN của
\(A=a^2+b^2+c^2\) biết \(x\ge0,y\ge0\) và \(x^2+y^2=1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Tìm min:
Áp dụng BĐT AM-GM:
$x^2+y^2+z^2\geq \frac{(x+y+z)^2}{3}=\frac{6^2}{3}=12$
Vậy $A_{\min}=12$. Giá trị này đạt tại $x=y=z=2$
--------------
Tìm max:
$A=x^2+y^2+z^2=(x+y+z)^2-2(xy+yz+xz)=36-2(xy+yz+xz)$
Vì $x,y,z\geq 0\Rightarrow xy+yz+xz\geq 0$
$\Rightarrow A=36-2(xy+yz+xz)\leq 36$
Vậy $A_{\max}=36$. Giá trị này đạt tại $(x,y,z)=(0,0,6)$ và hoán vị.
Ta có : x + y = 1 => y = 1 - x
Do đó: \(0\le x\le1\)
\(A=x^2+\left(1-x\right)^2=2x^2-2x+1\)
\(=2\left(x-\frac{1}{2}\right)^2+\frac{1}{2}\ge\frac{1}{2}\)
Min A = 1/2
Dấu = xảy ra khi: \(x=y=\frac{1}{2}\)
Do \(0\le x\le1\) nên \(x\left(x-1\right)\le0\)
\(\Rightarrow A=2x\left(x-1\right)+1\le1\)
Max A =1
Dấu = xảy ra khi: \(\orbr{\begin{cases}x=1\Rightarrow y=0\\x=0\Rightarrow y=1\end{cases}}\)
=.= hok tốt!!
giúp mình với cho x+y+z=3 Tìm GTLN xy/(x+3y+2z) + yz/(y+3z+2x) + zx/(z+3x+2y)
*) tìm giá trị lớn nhất: từ giả thiết \(\hept{\begin{cases}0\le x\le1\\0\le y\le1\end{cases}\Leftrightarrow\hept{\begin{cases}x^3\le x^2\\y^3\le y^2\end{cases}\Leftrightarrow}x^3+y^3\le x^2+y^2=1}\)
maxA=1 \(\Leftrightarrow\hept{\begin{cases}x^3=x^2\\y^3=y^2\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0;y=1\\x=1;y=0\end{cases}}}\)
*) tìm giá trị nhỏ nhất \(\left(x+y\right)^2\le2\left(x^2+y^2\right)=1\Rightarrow x+y\le\sqrt{2}\Rightarrow\frac{x+y}{\sqrt{2}}\le1\)
do đó \(x^3+y^3\ge\frac{\left(x^3+y^3\right)\left(x+y\right)}{\sqrt{2}}\)theo bđt Bunhiacopxki
\(\left(x^3+y^3\right)\left(x+y\right)=\left[\left(\sqrt{x^3}\right)^2+\left(\sqrt{y^3}\right)^2\right]\left[\left(\sqrt{x}\right)^2+\left(\sqrt{y}\right)^2\right]\)
\(\ge\left(\sqrt{x^3}\cdot\sqrt{x}+\sqrt{y^3}\cdot\sqrt{y}\right)^2=x^2+y^2=1\)
vậy minA=\(\frac{1}{\sqrt{2}}\Leftrightarrow x=y=\frac{\sqrt{2}}{2}\)
*)Tìm GTLN
Từ giả thiết có: \(\left\{{}\begin{matrix}0\le x\le1\\0\le y\le1\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x^3\le x^2\\y^3\le y^2\end{matrix}\right.\)\(\Rightarrow x^3+y^3\le x^2+y^2=1\)
Đẳng thức xảy ra khi \(\left\{{}\begin{matrix}x=0\\y=1\end{matrix}\right.\) hoặc \(\left\{{}\begin{matrix}x=1\\y=0\end{matrix}\right.\)
*)Tìm GTNN
Ta có: \(A=x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)\)
Áp dụng BĐT \(\left(x+y\right)^2\ge2\left(x^2+y^2\right)\) ta có:
\(\left(x+y\right)^2\ge2\left(x^2+y^2\right)=2\Rightarrow x+y\ge\sqrt{2}\left(x;y\ge0\right)\left(1\right)\)
Và \(xy\le\dfrac{x^2+y^2}{2}=\dfrac{1}{2}\Rightarrow-xy\ge-\dfrac{1}{2}\)
\(\Rightarrow x^2+y^2-xy\ge1-\dfrac{1}{2}=\dfrac{1}{2}\left(2\right)\)
Nhân theo vế của \(\left(1\right);\left(2\right)\) ta có:
\(A=\left(x+y\right)\left(x^2+y^2-xy\right)\ge\sqrt{2}\cdot\dfrac{1}{2}=\dfrac{1}{\sqrt{2}}\)
Đẳng thức xảy ra khi \(x=y=\dfrac{1}{\sqrt{2}}\)
***) Vì \(x,y\ge0\) và \(x^2+y^2=1\) nên:
\(\left\{{}\begin{matrix}0\le x\le1\\0\le y\le1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x^3\le x^2\\y^3\le y^2\end{matrix}\right.\Leftrightarrow x^3+y^3\le x^2+y^2=1\)
Vậy Max A=1 \(\Leftrightarrow\left\{{}\begin{matrix}x^3=x^2\\y^3=y^2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0;y=1\\x=1;y=0\end{matrix}\right.\)
***) Áp dụng bất đẳng thức cô si ta có:
\(x^2+y^2\ge2\sqrt{x^2y^2}=2xy\)
\(\Leftrightarrow2\left(x^2+y^2\right)\ge x^2+y^2+2xy=\left(x+y\right)^2\)
\(\Leftrightarrow\left(x+y\right)^2\le2\Leftrightarrow x+y\le\sqrt{2}\Rightarrow\dfrac{x+y}{\sqrt{2}}\le1\) (1)
Áp dụng BĐT Bunyakovsky có:
\(\left(x^3+y^3\right)\left(x+y\right)\ge\left(\sqrt{x^3}\cdot\sqrt{x}+\sqrt{y^3}\cdot\sqrt{y}\right)^2=\left(x^2+y^2\right)^2=1\) (2)
Mặt khác: \(x^3+y^3\ge\dfrac{\left(x^3+y^3\right)\left(x+y\right)}{\sqrt{2}}\) (theo 1) (3)
Từ (2);(3) \(\Rightarrow x^3+y^3\ge\dfrac{1}{\sqrt{2}}\)
Vậy min A=\(\dfrac{1}{\sqrt{2}}\Leftrightarrow x=y=\dfrac{\sqrt{2}}{2}\)
ta có \(\frac{x+\sqrt{x}+1}{x+2\sqrt{x}+1}=\frac{\left(\sqrt{x}\right)^2+\sqrt{x}+1}{\left(\sqrt{x}+1\right)^2}\)
đặt (căn x )+1 = a=> căn x = a- 1 => x = (a - 1 ) ^2 thay vào rùi tự làm nhé ^-^