Tìm 2 số nguyên sao cho tich của chúng bằng 5 lần tổng của chúng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi 3 số nguyên tố là a b c
=> abc = 5(a + b +c )
Do a, b, c nguyên tố ; 5 ( a+b+c) chia hết cho 5 => abc phải có một số chia hết cho 5 . a ;b;c nguyên tố => giả sử a= 5
=> 5bc=5(5+b+c) => bc= 5 + b + c
=> b-bc + c + 5 = 0
=> b (1 -c) - (1 - c) = -6
=> (b-1)(c-1)=6
b; c nguyên tố => b-1 và c-1 là 2 số tự nhiên
Giải (b-1)(c-1)=6
Tìm dc (b;c) =(2;7) , (7;2)
Vậy (a;b;c) là (2;5;7) hoán vị
Gọi 3 số nguyên tố đó là a,b,c
Ta có: abc =5(a+b+c)
=> abc chia hết cho 5, do a,b,c nguyên tố
=> chỉ có trường hợp 1 trong 3 số =5, giả sử là a =5
=> bc = b+c +5 => (b-1)(c-1) = 6
{b-1 =1 => b=2; c-1 =6 => c=7
{b-1=2, c-1=3 => c=4 (loại)
Vậy 3 số nguyên tố đó là 2, 5, 7
3. => 1 trong 2 số phải là 1(tích của 2 số tự nhiên khác 1 là hợp số)
=> số thứ 2 là 2
gọi 3 số nguyên tố là a b c
=> abc = 5(a + b +c )
Do a, b, c nguyên tố ; 5 ( a+b+c) chia hết cho 5 => abc phải có một số chia hết cho 5 . a ;b;c nguyên tố => giả sử a= 5
=> 5bc=5(5+b+c) => bc= 5 + b + c
=> b-bc + c + 5 = 0
=> b (1 -c) - (1 - c) = -6
=> (b-1)(c-1)=6
b; c nguyên tố => b-1 và c-1 là 2 số tự nhiên
Giải (b-1)(c-1)=6
Tìm dc (b;c) =(2;7) , (7;2)
Vậy (a;b;c) là (2;5;7) hoán vị
cop thì ghi tham khảo vào ạ
Nguồn:https://olm.vn/hoi-dap/detail/8993276910.html
Gọi 2 số nguyên cần tìm là: a và b ( a,b thuộc Z )
Theo bài ra ta có :
ab = 5(a + b)
=> ab - 5(a + b) = 0
=> ab - 5a - 5b = 0
=> a(b - 5) - 5b + 25 = 25
=> a(b - 5) - 5(b - 5) = 25
=> (a - 5)(b -5 ) = 25
Vì a,b thuộc Z => a-5 và b - 5 thuộc Z
mà 25 = 1.25= 25.1 = (-1) . (-25)= (-25) . (-1)
sau đó p lập bảng tìm giá trị