1) so sanh
(1/32)^7 va (1/16)^9
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+.....+\frac{1}{10000}=\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+.....+\frac{1}{100.100}\)
\(\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+....+\frac{1}{100.100}<\frac{1}{1.2}+\frac{1}{2.3}+.....+\frac{1}{99.100}=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-....-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\)\(=1-\frac{1}{100}=\frac{99}{100}<1\)
Vậy \(\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+.....+\frac{1}{10000}<1\)
Ax(2-1)=(2-1)(2+1)(2^2+1)(2^4+1)(2^8+1)(2^16+1)=(2^2-1)(2^2+1)(2^4+1)(2^8+1)(2^16+1)=(2^4-1)(2^4+1)(2^8+1)(2^16+1)=(2^8-1)(2^8+1)(2^16+1)=(2^16-1)(2^16+1)=2^32-1
Vậy A=B
Áp dụng hằng đẵng thức A^2-B^2 đó bạn
\(A< \frac{1}{5}+\frac{1}{5}+\frac{1}{5}+\frac{1}{5}+\frac{1}{5}=\frac{5}{5}=1=B\)
a/
\(\frac{2001}{2004}=\frac{2004-3}{2004}=1-\frac{3}{2004}=1-\frac{1}{668}.\)
\(\frac{39}{40}=\frac{40-1}{40}=1-\frac{1}{40}\)
Ta có \(40< 668\Rightarrow\frac{1}{40}>\frac{1}{668}\Rightarrow1-\frac{1}{40}< 1-\frac{1}{668}\Rightarrow\frac{39}{40}< \frac{2001}{2004}\)
b/
\(A< \frac{1}{5}+\frac{1}{5}+\frac{1}{5}+\frac{1}{5}+\frac{1}{5}=1=B\)
Ta có:
\(\left(\frac{1}{32}\right)^7=\frac{1^7}{32^7}=\frac{1}{\left(2^5\right)^7}=\frac{1}{2^{35}}\)
\(\left(\frac{1}{16}\right)^9=\frac{1^9}{16^9}=\frac{1}{\left(2^4\right)^9}=\frac{1}{2^{36}}\)
Vì 235 < 236
=> \(\frac{1}{2^{35}}>\frac{1}{2^{36}}\)
=> \(\left(\frac{1}{32}\right)^7>\left(\frac{1}{16}\right)^9\)
\(\left(\frac{1}{32}\right)^7=\left[\left(\frac{1}{2}\right)^5\right]^7=\left(\frac{1}{2}\right)^{35}\)và \(\left(\frac{1}{16}\right)^9=\left[\left(\frac{1}{2}\right)^4\right]^9=\left(\frac{1}{2}\right)^{32}\)
Mà:\(\left(\frac{1}{2}\right)^{35}>\left(\frac{1}{2}\right)^{32}\Rightarrow\left(\frac{1}{32}\right)^7>\left(\frac{1}{16}\right)^9\)