Cho tứ giác ABCD có O là giao điểm của 2 đường chéo, AB=6cm, OA=8cm, OB=4cm, OD=6cm. Tính AD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
hình bn tự vẽ nha
cách giải, bn tham khảo ở đây nha
https://diendan.hocmai.vn/threads/cho-tu-giac-abc-co-o-la-giao-diem-2-duong-cheo.242620/
a) Ta có MN và PQ lần lượt là các đường trung bình của các tam giác AOB và COD mà AB // CD và AB = CD nên MN // PQ và MN = PQ
⇒ Tứ giác MNPQ là hình bình hành.
Tương tự NP // BC mà AB ⊥ BC nên MN ⊥ NP. Do đó MNPQ là hình chữ nhật.
Trong ΔABC ta có
Vậy SMNPQ = MN.PQ = 3.4 = 12 (cm2).
b)Dễ thấy ΔAOB = ΔCOD (c.c.c).
Tương tự ΔMON = ΔPOQ
Do đó: SAOB = SCOD và SMON = SPOQ.
⇒ SAOB - SMON = SCOD - SPOQ hay SAMNB = SCPQD.
Chắc lớp 6 chưa học đến quá khó đâu , mình làm cách mang tính trực quan nhé
Ta có lục giác đều ABCDEG có các góc tạo bởi 2 cạnh kề nhau là 120 độ.
Khi lấy giao điểm O của các đường chéo đã chia hình thành 6 tam giác cân tại O và có góc ở đáy là 120: 2 =60 độ
Nên các tam giác AOB.BOC,COD,DOE,EOG,GOA là tam giác đều
=> AO=BO=CO=DO=OE=OG