Bài 4: Cho tam giác cân ABC (AB = AC), các đường cao AD, BE, cắt nhau tại H. Gọi O là tâm đường tròn ngoại tiếp tam giác AHE. Chứng minh:
Giải giúp mình câu c và d nhé!
a/ tứ giác CEHD nội tiếp . b/Bốn điểm A, E, D, B cùng nằm trên một đường tròn.
c/ tam giác cân EBD cân. d/ DE là tiếp tuyến của đường tròn (O).
c: ΔAHE vuông tại H
=>O là trung điểm của AH
ΔABC cân tại A có AD là đường cao
nên D là trung điểm của BC
ΔEBC vuông tại E có ED là trung tuyến
nên DB=DE
=>ΔDBE cân tại D
d: góc OED=góc OEH+góc DEH
=góc OHE+góc DBE
=góc DBE+góc BHD=90 độ
=>DE là tiếp tuyến của (O)