1.cho a+b+c=1 với a,b,c >0.ứng minh rằng : √(a+b)+√(b+c)+√(c+a) ≥ √6
2. giải phương trình nghiệm nguyên: x^2+xy+y^2=x^2y^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Từ $a+b> c\Rightarrow a+b-c>0$ (cái này hiển nhiên)
Từ $|a-b|< c\Leftrightarrow |a-b|^2< c^2$
$\Leftrightarrow (a-b)^2< c^2$
$\Leftrightarrow (a-b-c)(a-b+c)<0$
Với $c>0$ thì $a-b-c< a-b+c$ nên để tích âm thì $a-b-c<0< a-b+c$
Hay $a-b-c<0$ và $a-b+c>0$
b)
\(\dfrac{ab}{c+1}+\dfrac{bc}{a+1}+\dfrac{ca}{b+1}\le\dfrac{1}{4}\)
\(\Leftrightarrow\dfrac{ab}{a+b+2c}+\dfrac{bc}{2a+b+c}+\dfrac{ca}{a+2b+c}\le\dfrac{1}{4}\)
Áp dụng bất đẳng thức \(\dfrac{1}{a+b}\le\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\forall a,b>0\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{ab}{a+b+2c}=\dfrac{ab}{a+c+b+c}\le\dfrac{ab}{4}\left(\dfrac{1}{a+c}+\dfrac{1}{b+c}\right)\\\dfrac{bc}{2a+b+c}=\dfrac{bc}{a+b+a+c}\le\dfrac{bc}{4}\left(\dfrac{1}{a+b}+\dfrac{1}{a+c}\right)\\\dfrac{ca}{a+2b+c}=\dfrac{ca}{a+b+b+c}\le\dfrac{ca}{4}\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}\right)\end{matrix}\right.\)
\(\Rightarrow VT\le\dfrac{ab}{4}\left(\dfrac{1}{a+c}+\dfrac{1}{b+c}\right)+\dfrac{bc}{4}\left(\dfrac{1}{a+b}+\dfrac{1}{a+c}\right)+\dfrac{ca}{4}\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}\right)\)
\(\Rightarrow VT\le\dfrac{ab}{4\left(a+c\right)}+\dfrac{ab}{4\left(b+c\right)}+\dfrac{bc}{4\left(a+b\right)}+\dfrac{bc}{4\left(a+c\right)}+\dfrac{ca}{4\left(a+b\right)}+\dfrac{ca}{4\left(b+c\right)}\)
\(\Rightarrow VT\le\left[\dfrac{ab}{4\left(a+c\right)}+\dfrac{bc}{4\left(a+c\right)}\right]+\left[\dfrac{bc}{4\left(a+b\right)}+\dfrac{ca}{4\left(a+b\right)}\right]+\left[\dfrac{ca}{4\left(b+c\right)}+\dfrac{ab}{4\left(b+c\right)}\right]\)
\(\Rightarrow VT\le\dfrac{ab+bc}{4\left(a+c\right)}+\dfrac{bc+ca}{4\left(a+b\right)}+\dfrac{ca+ab}{4\left(b+c\right)}\)
\(\Rightarrow VT\le\dfrac{b\left(a+c\right)}{4\left(a+c\right)}+\dfrac{c\left(a+b\right)}{4\left(a+b\right)}+\dfrac{a\left(b+c\right)}{4\left(b+c\right)}\)
\(\Rightarrow VT\le\dfrac{a+b+c}{4}\)
\(\Rightarrow VT\le\dfrac{1}{4}\)
\(\Leftrightarrow\dfrac{ab}{c+1}+\dfrac{bc}{a+1}+\dfrac{ca}{b+1}\le\dfrac{1}{4}\) ( đpcm )
Dấu " = " xảy ra khi \(a=b=c=\dfrac{1}{3}\)
1/ \(x^2+1\ge2x;x^2+y^2\ge2xy\Rightarrow\left(x^2+1\right)\left(x^2+y^2\right)\ge4x^2y\)
Dấu = xảy ra <=> x=1 và x=y <=> x=y=1
2/ \(a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)=\left(a+b\right)\left[\left(a-b\right)^2+ab\right]\ge\left(a+b\right)\left(ab+0\right)=ab\left(a+b\right)\)
\(\frac{1}{a^3+b^3+abc}\le\frac{1}{ab\left(a+b\right)+abc}=\frac{1}{ab\left(a+b+c\right)}=\frac{c}{abc\left(a+b+c\right)}\)
chứng minh tương tự rồi cộng 2 cái kia vào rút gọn sẽ ra nhé bạn
2
\(pt\Leftrightarrow x^2\left(1-y^2\right)+y.x+y^2=0\text{ (1)}\)
+Xét trường hợp \(1-y^2=0\Leftrightarrow y=\pm1\)
\(y=1\text{ thì }pt\rightarrow x+1=0\Leftrightarrow x=-1\)
\(y=-1\text{ thì }pt\rightarrow-x+1=0\Leftrightarrow x=1\)
+Xét \(y=0\)\(pt\rightarrow x=0\)
+Xét \(y\ne0;-1;1\Rightarrow\left|y\right|\ge2\Rightarrow y^2-1\ge3\)
\(pt\Leftrightarrow x^2\left(1-y^2\right)+y.x+y^2=0\text{ (1)}\)
\(\Delta\text{ (}x\text{) }=y^2-4\left(1-y^2\right)y^2=y^2\left(4y^2-3\right)\)
Để phương trình (1) có nghiệm x là một số nguyên thì \(\Delta\)phải là bình phương của một số hữu tỉ.
Khi đó, (1) có nghiệm \(x=\frac{-y\pm\sqrt{y^2\left(4y^2-3\right)}}{1-y^2}=\frac{-y\pm y\sqrt{4y^2-3}}{1-y^2}\)
Ta thấy ngay: \(\hept{\begin{cases}-y\in Z\\1-y^2\in Z\\1-y^2\le-3\end{cases}}\)nên nếu \(\sqrt{4y^2-3}\notin Z\) thì \(x\notin Z\)
Vậy ta cần \(\sqrt{4y^2-3}\in Z\Leftrightarrow4y^2-3=k^2\text{ }\left(k\in Z\text{+}\right)\)
\(\Leftrightarrow\left(2y+k\right)\left(2y-k\right)=3\)
Do \(k>0\) nên \(2y+k>2y-k\) và hai số trên đều nguyên nên xảy ra các trường hợp
\(\hept{\begin{cases}2y+k=3\\2y-k=1\end{cases}\text{ hoặc }\hept{\begin{cases}2y-k=-3\\2y+k=-1\end{cases}}}\)
\(\Leftrightarrow\hept{\begin{cases}y=1\\k=1\end{cases}}\text{ hoặc }\hept{\begin{cases}y=-1\\k=1\end{cases}}\)
Loại hết vì đang xét \(\left|y\right|\ge2\)
Vậy các nghiệm nguyên của hệ là \(\left(x;y\right)=\left(0;0\right);\text{ }\left(-1;1\right);\text{ }\left(1;-1\right)\)
\(1.\) Cho \(a+b+c=1\) với \(a,b,c>0\)
Chứng minh rằng: \(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\le\sqrt{6}\left(1\right)\)
\(--------\)
\(\left(1\right)\) \(\Leftrightarrow\) \(\sqrt{1-a}+\sqrt{1-b}+\sqrt{1-c}\le\sqrt{6}\left(2\right)\)
Ta cần chứng minh bđt \(\left(2\right)\) luôn đúng với mọi số thực \(a,b,c>0\)
Thật vậy, áp dụng bđt Cauchy cho hai số dương, ta được:
\(\hept{\begin{cases}\sqrt{\frac{2}{3}\left(1-a\right)}\le\frac{1-a+\frac{2}{3}}{2}=\frac{5-3a}{6}\\\sqrt{\frac{2}{3}\left(1-b\right)}\le\frac{5-3b}{6}\\\sqrt{\frac{2}{3}\left(1-c\right)}\le\frac{5-3c}{6}\end{cases}}\)
Do đó, \(\sqrt{\frac{2}{3}}\left(\sqrt{1-a}+\sqrt{1-b}+\sqrt{1-c}\right)\le\frac{15-3\left(a+b+c\right)}{6}=\frac{15-3.1}{6}=2\)
hay nói cách khác, \(\sqrt{\frac{2}{3}}VT\left(2\right)\le2\)
\(\Rightarrow\) \(VT\left(2\right)\le\sqrt{\frac{3}{2}}.2=\sqrt{6}=VP\left(2\right)\)
Vậy, bđt \(\left(2\right)\) được chứng minh nên kéo theo bđt \(\left(1\right)\) luôn đúng với mọi \(a,b,c>0\)
Đẳng thức trên xảy ra khi và chỉ khi \(a=b=c=\frac{1}{3}\)