Số các giá trị nguyên của \(a\)thỏa mãn:
\(-3< \frac{a}{6}< \frac{1}{3}\)
Giúp nha^^
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
-3 < \(\frac{a}{6}\) < \(\frac{1}{3}\)
=> \(\frac{-18}{6}\) < \(\frac{a}{6}\) < \(\frac{2}{6}\)
=> a thuộc {-17; -16; -15;.......; 0; 1}
=> Có 19 giá trị nguyên của a
giá trị x nguyên thỏa mãn:
\(\frac{6}{5}< x-\frac{3}{2}< \frac{12}{5}\)
các bn giải đầy đủ giúp mk nha
Ta có:
\(\frac{6}{5}< x-\frac{3}{2}< \frac{12}{5}\)
\(=>\frac{12}{10}< x-\frac{15}{10}< \frac{24}{10}\)
\(=>\frac{12+15}{10}< x< \frac{24+15}{10}\)
\(=>\frac{27}{10}< x< \frac{39}{10}\) (mà x là số nguyên)
\(=>x=3\)
1/ Ta có \(\frac{1}{3}< \frac{9}{x}< \frac{1}{2}\)
\(\Rightarrow\frac{9}{27}< \frac{9}{x}< \frac{9}{18}\)
\(\Rightarrow27>x>18\)
Vì \(x\in Z\Rightarrow x\in\left\{19,20,...,26\right\}\)
Vậy....
1. Áp dụng bất đẳng thức \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\) với \(a=x^3+3xy^2,b=y^3+3x^2y\) (a;b > 0)
(Bất đẳng thức này a;b > 0 mới dùng được)
\(A\ge\frac{4}{x^3+3xy^2+y^3+3x^2y}=\frac{4}{\left(x+y\right)^3}\ge\frac{4}{1^3}=4\)
Dấu "=" xảy ra khi: \(\hept{\begin{cases}x^3+3xy^2=y^3+3x^2y\\x+y=1\end{cases}\Leftrightarrow\hept{\begin{cases}x^3-3x^2y+3xy^2-y^3=0\\x+y=1\end{cases}}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(x-y\right)^3=0\\x+y=1\end{cases}}\Leftrightarrow x=y=\frac{1}{2}\)
-3=-18/6
1/3=2/6
::::::::>-18<a<2
số số a thỏa mãn:19
Ta co : \(\frac{-18}{6}\)< \(\frac{a}{6}\)< \(\frac{6}{18}\)
=> a = -17 đến 5