Cho tam giác ABC đều,O là 1 điểm thuộc tam giác ABC.Chứng minh OA,OB,OC thỏa mãn bất đẳng thức tam giác
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.
Ta có:\(\Delta AEC=\Delta AFB\left(c.g.c\right)\Rightarrow\widehat{ECA}=\widehat{AFB}\)
Ta có:\(\widehat{BOC}=\widehat{OFC}+\widehat{OCF}=\widehat{OFC}+\widehat{OCK}+\widehat{KCF}=\left(\widehat{AFK}+\widehat{KFC}\right)+\widehat{ACF}=60^0+60^0=120^0\)
Trên đoạn thẳng OE lấy điểm D sao cho OB=OD.
Ta có:\(\Delta OBD\) cân tại O mà có \(\widehat{BOD}=180^0-\widehat{BOC}=180^0-120^0=60^0\)
\(\Rightarrow\Delta OBD\) đều.
\(\Rightarrow OB=OD=BD\left(1\right);\widehat{BOD}=\widehat{BDO}=\widehat{OBD}=60^0\)
Lại có:\(\widehat{EBD}=\widehat{EBA}-\widehat{DBA}=60^0-\widehat{DBA}\);\(\widehat{OBA}=\widehat{OBD}-\widehat{ABD}=60^0-\widehat{DBA}\)
\(\Rightarrow\widehat{EBD}=\widehat{OBA}\left(2\right)\)
Do \(\left(1\right);\left(2\right);EB=BA\Rightarrow\Delta EBD=\Delta ABO\left(c.g.c\right)\Rightarrow\widehat{EDB}=\widehat{AOB}=180^0-60^0=120^0\)
\(\Rightarrow\widehat{EOA}=\widehat{AOB}-\widehat{DOB}=120^0-60^0=60^0\left(3\right)\)
Mà: \(\widehat{AOC}=360^0-\widehat{AOB}-\widehat{BOC}=360^0-120^0-120^0=120^0;\widehat{FOC}=60^0\)
\(\Rightarrow\widehat{AOF}=60^0\left(4\right)\)
Từ \(\left(3\right);\left(4\right)\Rightarrow\widehat{AOE}=\widehat{AOF}\Rightarrowđpcm\)
Sửa đề: P là trung điểm của OC
a: Xét ΔOAB có OM/OA=ON/OB
nên MN//AB
=>MN/AB=OM/OA=1/2
Xét ΔOBC có ON/OB=OP/OC=1/2
nên NP/BC=1/2
Xét ΔOAC có OM/OA=OP/OC=1/2
nên MP/AC=OM/OA=1/2
Xét ΔMNP và ΔABC có
MN/AB=NP/BC=MP/AC=1/2
=>ΔMNP đồng dạng với ΔABC
b: ΔMNP đồng dạng với ΔABC
=>C MNP/C ABC=MN/AB=1/2
=>C MNP=1/2*542=271cm