Tìm 7 số nguyên dương sao cho tích các bình phương của chúng bằng 2 lần tổng các bình phương của chúng.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi 2 số cần tìm là x, y, tao đề bài ta có:
\(\frac{x}{y}=0,9=>\frac{x^2}{y^2}=\frac{81}{100}=>\frac{x^2}{81}=\frac{y^2}{100};x^2+y^2=72.4\)
Áp dụng tính chất dãy tỉ số = nhau, ta có:
\(\frac{x^2}{81}=\frac{y^2}{100}=\frac{x^2+y^2}{81+100}=\frac{72.4}{181}=\frac{2}{5}\)
=> \(\frac{x^2}{81}=\frac{2}{5}=>x^2=\frac{162}{5}=>x=\frac{9\sqrt{10}}{5}\)(Do x là số nguyên dương => \(x\ne-\frac{9\sqrt{10}}{5}\))
=> làm tương tự vậy thì đc : y = \(2\sqrt{10}\)
Vậy...
Gọi 2 số nguyên dương là a;b ta có:\(\frac{a}{b}=\frac{9}{10}\Rightarrow\frac{a}{9}=\frac{b}{10}\)và \(a^2+b^2=724\)
Đặt\(\frac{a}{9}=\frac{b}{10}=k\Rightarrow\left(\frac{a}{9}\right)^2=\left(\frac{b}{10}\right)^2=k^2\Rightarrow\frac{a^2}{81}=\frac{b^2}{100}=k^2\)
Áp dụng tính chất tỉ lệ thức ta có:\(\frac{a^2}{81}=\frac{b^2}{100}=\frac{a^2+b^2}{81+100}=\frac{724}{181}=4=k^2\)
\(\Rightarrow k\in\left\{2;-2\right\}\)
Khi k = 2 => \(\frac{a}{9}=2\Rightarrow a=18;\frac{b}{10}=2\Rightarrow b=20\)
Khi k = -2 =>\(\frac{a}{9}=-2\Rightarrow a=-18;\frac{b}{10}=-2\Rightarrow b=-20\)
Vậy\(\left(a;b\right)=\left\{\left(18;20\right);\left(-18;-20\right)\right\}\)
Gọi 2 số cần tìm là:a;b (a;b thuộc N*)
Theo đề ra ta có:a/b=2/3
=>a/2=b/3
Đặt a/2=b/3=k (k thuộc N*)
=>a=2k;b=3k
=>a^2=4k^2;b^2=9k^2
=>a^2+b^2=4k^2+9k^2=k^2.(4+9)=13k^2=208
=>k^2=16=>k=4 hoặc k=-4
+Nếu k=4=>a=8;b=12
+Nếu k=-4=>a=-8;b=-12
de the ma ns kho
72+32=58
(tong binh phuong la : a2+b2 )
ket qua bai nay la 58
Lời giải:
Gọi 2 số dương đề cập ở đề là $a$ và $b$. Theo bài ra ta có:
$\frac{a}{b}=\frac{7}{2}$ và $ab=21$
$\Rightarrow a=\frac{7}{2}b$ và $ab=21$
$\Rightarrow \frac{7}{2}b.b=21$
$\Rightarrow b^2=6$
$a^2=(\frac{7}{2}b)^2=\frac{49}{4}.b^2=\frac{147}{2}$
Tổng bình phương 2 số:
$a^2+b^2=\frac{147}{2}+6=\frac{159}{2}$