Mn giúp em 3 câu này với ạ
1. l 9-x l= 2x
2.l x-15l+1= 3x
3. l5-4xl = 4-5x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a:Ta có: \(A=-4x^2+x-1\)
\(=-4\left(x^2-\dfrac{1}{4}x+\dfrac{1}{4}\right)\)
\(=-4\left(x^2-2\cdot x\cdot\dfrac{1}{8}+\dfrac{1}{64}+\dfrac{63}{64}\right)\)
\(=-4\left(x-\dfrac{1}{8}\right)^2-\dfrac{63}{16}\le-\dfrac{63}{16}\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{1}{8}\)
b: Ta có: \(B=-3x^2+5x+6\)
\(=-3\left(x^2-\dfrac{5}{3}x-2\right)\)
\(=-3\left(x^2-2\cdot x\cdot\dfrac{5}{6}+\dfrac{25}{36}-\dfrac{97}{36}\right)\)
\(=-3\left(x-\dfrac{5}{6}\right)^2+\dfrac{97}{12}\le\dfrac{97}{12}\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{5}{6}\)
c: Ta có: \(C=-x^2+3x+4\)
\(=-\left(x^2-3x-4\right)\)
\(=-\left(x^2-2\cdot x\cdot\dfrac{3}{2}+\dfrac{9}{4}-\dfrac{25}{4}\right)\)
\(=-\left(x-\dfrac{3}{2}\right)^2+\dfrac{25}{4}\le\dfrac{25}{4}\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{3}{2}\)
\(a,A\left(x\right)=-3x^3+2x^2-6+5x+4x^3-2x^2-4-4x\\ =\left(-3x^3+4x^3\right)+\left(2x^2-2x^2\right)+\left(5x-4x\right)+\left(-6-4\right)\\ =x^3+0+x-10\\ =x^3+x-10\)
Bậc của đa thức \(3\)
Hệ số cao nhất là \(1\)
\(b,B\left(x\right)=A\left(x\right).\left(x-1\right)=\left(x^3+x-10\right)\left(x-1\right)\\ =x^3.x+x.x-10x-x^3-x+10\\ =x^4+x^2-x^3-x-10x+10\\ =x^4-x^3+x^2-11x+10\)
Thay \(x=2\) vào \(B\left(x\right)\)
\(=2^4-2^3+2^2-11.2+10\\ =0\)
Vậy tại \(x=2\) thì \(B\left(x\right)=0\)
Lời giải:
$15-|-2x+3||5+4x|=-19$
$15-|(-2x+3)(5+4x)|=-19$
$|(-2x+3)(5+4x)|=15-(-19)=34$
$\Rightarrow (-2x+3)(5+4x)=34$ hoặc $(-2x+3)(5+4x)=-34$
Nếu $(-2x+3)(5+4x)=34$
$\Rightarrow -8x^2+2x+15=34$
$\Rightarrow -8x^2+2x-19=0$
$\Rightarrow 8x^2-2x+19=0$
Độ phức tạp của việc giải phương trình này không phù hợp với lớp 8. Bạn xem lại nhé.
`@` `\text {Ans}`
`\downarrow`
`1.`
\(\left(-4xy\right)\cdot\left(2xy^2-3x^2y\right)\)
`=`\(\left(-4xy\right)\left(2xy^2\right)+\left(-4xy\right)\left(-3x^2y\right)\)
`=`\(-8\left(x\cdot x\right)\left(y\cdot y^2\right)+12\left(x\cdot x^2\right)\left(y\cdot y\right)\)
`=`\(-8x^2y^3+12x^3y^2\)
`2.`
\(\left(-5x\right)\left(3x^3+7x^2-x\right)\)
`=`\(\left(-5x\right)\left(3x^3\right)+\left(-5x\right)\left(7x^2\right)+\left(-5x\right)\left(-x\right)\)
`=`\(-15x^4-35x^3+5x^2\)
`3.`
\(\left(3x-2\right)\left(4x+5\right)-6x\left(2x-1\right)\)
`=`\(3x\left(4x+5\right)-2\left(4x+5\right)-12x^2+6x\)
`=`\(12x^2+15x-8x-10-12x^2+6x\)
`=`\(\left(12x^2-12x^2\right)+\left(15x-8x+6x\right)-10\)
`=`\(13x-10\)
`4.`
\(2x^2\left(x^2-7x+9\right)\)
`=`\(2x^2\cdot x^2+2x^2\cdot\left(-7x\right)+2x^2\cdot9\)
`=`\(2x^4-14x^3+18x^2\)
`5.`
\(\left(3x-5\right)\left(x^2-5x+7\right)\)
`=`\(3x\left(x^2-5x+7\right)-5\left(x^2-5x+7\right)\)
`=`\(3x^3-15x^2+21x-5x^2+25x-35\)
`=`\(3x^3-20x^2+46x-35\)
a)
\(\left(1-\dfrac{1}{5}\right)x\left(1-\dfrac{2}{5}\right)x...x\left(1-\dfrac{9}{5}\right)\\ =\left(1-\dfrac{1}{5}\right)x...x\left(1-\dfrac{5}{5}\right)x...x\left(1-\dfrac{9}{5}\right)\\ =\left(1-\dfrac{1}{5}\right)x...x0x...x\left(1-\dfrac{9}{5}\right)=0\)
x là nhân nhé :))
b)
\(\dfrac{1}{2}x\dfrac{2}{3}x...x\dfrac{9}{10}\\ =\dfrac{1x2x...x9}{2x3x...x10}=\dfrac{2x3x...x9}{2x3x...x9x10}=\dfrac{1}{10}\)
\(a,=-15x^3+10x^4+20x^2\\ b,=2x^3+2x^2+4x-x^2-x-2=2x^3+x^2+3x-2\)
\(\left|9-x\right|=2x\)
\(\Rightarrow\left[{}\begin{matrix}9-x=2x\\9-x=-2x\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=3\\x=-9\end{matrix}\right.\)
\(\left|x-15\right|+1=3x\)
\(\left|x-15\right|=3x-1\)
\(\Rightarrow\left[{}\begin{matrix}x-15=3x-1\\x-15=-3x+1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-7\\x=4\end{matrix}\right.\)