Cho A = \(\frac{\sqrt{x}}{\sqrt{ }x-1}-\frac{2}{\sqrt{ }x+1}-\frac{2}{\sqrt{ }x-1}\)
Tìm điều kiện xác định và rút gọn A
<giúp mình giải bài toán này nhé mình đang cần gấp>
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,
\(A\Leftrightarrow\)\(\left(\frac{1}{\sqrt{x}-1}-\frac{\sqrt{x}+1}{\left(\sqrt{x}\right)^2+2\sqrt{x}+1}\right)\)\(\times\frac{x-1}{\sqrt{x}-3}\)
\(\Leftrightarrow\left(\frac{1}{\sqrt{x}-1}-\frac{\sqrt{x}+1}{\left(\sqrt{x}+1\right)^2}\right)\)\(\times\frac{x-1}{\sqrt{x}-3}\)(1)
Để A xđ <=> \(\hept{\begin{cases}x\ge0\\\sqrt{x}-1\ne0\\\sqrt{x}-3\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge0\\x\ne1\\x\ne9\end{cases}}\)
b , (1) <=> \(\left(\frac{\left(\sqrt{x}+1\right)^2-\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}\right)\)\(\times\frac{x-1}{\sqrt{x}-3}\)
<=> \(\left(\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+1-\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}\right)\)\(\times\frac{x-1}{\sqrt{x}-3}\)
<=> \(\frac{2}{x-1}\times\frac{x-1}{\sqrt{x}-3}\)
<=> \(\frac{2}{\sqrt{x}-3}\)
\(a,ĐKXĐ:x\ne\sqrt{2};-\sqrt{2};x\ne4\)
\(P=\frac{\sqrt{x}+1}{\sqrt{x}-2}+\frac{2\sqrt{x}}{\sqrt{x}+2}+\frac{2+5\sqrt{x}}{4-x}\)
\(P=\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)}{x-4}+\frac{2\sqrt{x}\left(\sqrt{x}-2\right)}{x-4}+\frac{-2-5\sqrt{x}}{x-4}\)
\(P=\frac{x+3\sqrt{x}+2+2x-4\sqrt{x}-2-5\sqrt{x}}{x-4}\)
\(P=\frac{3x-6\sqrt{x}}{x-4}\)
\(b;\)Để P<2
\(\Rightarrow3x-6\sqrt{x}< 2x-8\)
\(\Rightarrow3x-2x< -8+6\sqrt{x}\)
\(\Rightarrow x-6\sqrt{x}< -8\)
\(\Rightarrow\sqrt{x}\left(\sqrt{x}-6\right)< 8\)
Tìm x là xong
a) \(P=\frac{\sqrt{x}+1}{\sqrt{x}-2}+\frac{2\sqrt{x}}{\sqrt{x}+2}+\frac{2+5\sqrt{x}}{4-x}\)\(\left(ĐKXĐ:x>4\right)\)
\(P=\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\frac{2\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}+\frac{-2-5\sqrt{x}}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(P=\frac{3x-6\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(P=\frac{3\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(P=\frac{3\sqrt{x}}{\sqrt{x}+2}\)
b) Ta có : \(P< 2\Leftrightarrow\frac{3\sqrt{x}}{\sqrt{x}+2}< 2\)
\(\Leftrightarrow\frac{3\sqrt{x}}{\sqrt{x}+2}-2< 0\)
\(\Leftrightarrow\frac{3\sqrt{x}}{\sqrt{x}+2}-\frac{2\sqrt{x}+4}{\sqrt{x}+2}< 0\)
\(\Leftrightarrow\frac{\sqrt{x}-4}{\sqrt{x}+2}< 0\)
Mà \(\sqrt{x}-4< \sqrt{x}+2\)
\(\Rightarrow\hept{\begin{cases}\sqrt{x}-4< 0\\\sqrt{x}+2>0\end{cases}\Leftrightarrow}\hept{\begin{cases}\sqrt{x}< 4\\\sqrt{x}>-2\end{cases}}\Leftrightarrow\hept{\begin{cases}x< 16\\x>4\end{cases}}\Leftrightarrow4< x< 16\)
Vậy ...
a. ĐKXĐ : \(\orbr{\begin{cases}x\ge0\\1-\sqrt{x}\ne0\end{cases}}\)<=> \(\orbr{\begin{cases}x\ge0\\x\ne1\end{cases}}\)
b. \(P=\frac{15\sqrt{x}-11}{x+2\sqrt{x}-3}+\frac{3\sqrt{x}-2}{1-\sqrt{x}}-\frac{2\sqrt{x}+3}{\sqrt{x}+3}\)
\(\Leftrightarrow P=\frac{15\sqrt{x}-11}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}-\frac{3\sqrt{x}-2}{\sqrt{x}-1}-\frac{2\sqrt{x}+3}{\sqrt{x}+3}\)
\(\Leftrightarrow P=\frac{15\sqrt{x}-11-\left(3\sqrt{x}-2\right)\left(\sqrt{x}+3\right)-\left(2\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)
\(\Leftrightarrow P=\frac{15\sqrt{x}-11-3x-7\sqrt{x}+6-2x-\sqrt{x}+3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)
\(\Leftrightarrow P=\frac{-5x+7\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)
\(\Leftrightarrow P=\frac{\left(\sqrt{x}-1\right)\left(2-5\sqrt{x}\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)
\(\Leftrightarrow P=\frac{2-5\sqrt{x}}{\sqrt{x}+3}\)
a) DK de P xác dinh : \(\hept{\begin{cases}x\ge0\\x\ne1\end{cases}}\)
b) \(P=\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{1-x}+\frac{\left(\sqrt{x}-2\right)^2+3\sqrt{x}-x}{1-\sqrt{x}}\)
\(=\frac{\sqrt{x}}{1-\sqrt{x}}+\frac{-\sqrt{x}+4}{1-\sqrt{x}}\)
\(=\frac{4}{1-\sqrt{x}}\)
c) de P > o thì \(1-\sqrt{x}>0\Rightarrow\sqrt{x}< 1\Rightarrow0< x< 1\)
\(A=\frac{\sqrt{x}}{\sqrt{x}-1}-\frac{2}{\sqrt{x}+1}-\frac{2}{\sqrt{x}-1}\)
Biểu thức \(A\) có nghĩa khi \(\hept{\begin{cases}\sqrt{x}+1\ne0;\text{ }x\ge0\\\sqrt{x}-1\ne0\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}x\ge0\\x\ne1\end{cases}}\)
Ta có:
\(A=\frac{\sqrt{x}}{\sqrt{x}-1}-\frac{2}{\sqrt{x}+1}-\frac{2}{\sqrt{x}-1}=\frac{\sqrt{x}\left(\sqrt{x}+1\right)-2\left(\sqrt{x}-1\right)-2\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(A=\frac{x+\sqrt{x}-2\sqrt{x}+2-2\sqrt{x}-2}{x-1}=\frac{x-3\sqrt{x}}{x-1}\)
Vậy, \(A=\frac{x-3\sqrt{x}}{x-1}\)
đề đúng hk bn