cho tổng S=(1:31)+(1:32)+...+(1:60)
CM 3:5<S<4:5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/31>1/40
1/32>1/40
...
1/40=1/40
=>1/31+1/32+...+1/40>1/40*10=1/4
1/41>1/50
1/42>1/50
...
1/50=1/50
=>1/41+1/42+...+1/50>10/50=1/5
1/51>1/60
1/52>1/60
...
1/60=1/60
=>1/51+1/52+...+1/60>10/60=1/6
=>S>1/4+1/5+1/6=3/5
1/31<1/30
1/32<1/30
...
1/40<1/30
=>1/31+1/32+...+1/40<1/30*10=1/3
1/41<1/40
1/42<1/40
...
1/50<1/40
=>1/41+1/42+...+1/50<10/40=1/4
1/51<1/50
1/52<1/50
...
1/60<1/50
=>1/51+1/52+...+1/60<10/50=1/5
=>S<1/3+1/4+1/5=4/5
A = (1/31+1/32+1/33+...+1/40) + (1/41 + 1/42 + ...+ 1/50) + (1/51 + 1/52+...+1/59+1/60)
Mà : (1/31+1/32+1/33+...+1/40) > 1/40 x 10 = 1/4 (gồm 10 số hạng)
Tương tự : (1/41 + 1/42 + ...+ 1/50) > 1/5 ; (1/51 + 1/52+...+1/59+1/60) > 1/6
A > 1/4 + 1/5 + 1/6.
Trong khi đó (1/4 + 1/5 + 1/6) > 3/5
Vậy A > 3/5 (1)
Mặt khác
A = (1/31+1/32+1/33+...+1/40) + (1/41 + 1/42 + ...+ 1/50) + (1/51 + 1/52+...+1/59+1/60)
Mà : (1/31+1/32+1/33+...+1/40) < 1/31 x 10 = 10/30 = 1/3 (gồm 10 số hạng)
Tương tự : (1/41 + 1/42 + ...+ 1/50) < 1/4 ; (1/51 + 1/52+...+1/59+1/60) < 1/5
Mà A = (1/3 + 1/4 + 1/5) < 4/5 (Vì 1/3 + 1/5 < 3/5 hay 7/12 < 3/5 hay 35/60 < 36/60)
Vậy A < 4/5 (2)
Từ (1);(2)=> 3/5 <S <4/5 (dpcm)
\(S=\left(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{40}\right)+\left(\frac{1}{41}+..+\frac{1}{50}\right)+\left(\frac{1}{51}+..+\frac{1}{60}\right)\)
\(\Rightarrow S>\left(\frac{1}{40}+\frac{1}{40}+..+\frac{1}{40}\right)+\left(\frac{1}{50}+\frac{1}{50}+..+\frac{1}{50}\right)+\left(\frac{1}{60}+\frac{1}{60}+..+\frac{1}{60}\right)\)
\(\Rightarrow S>10\cdot\frac{1}{40}+10\cdot\frac{1}{50}+10\cdot\frac{1}{60}=\frac{37}{60}>\frac{36}{60}=\frac{3}{5}\left(1\right)\)
\(S=\left(\frac{1}{31}+\frac{1}{32}+..+\frac{1}{40}\right)+\left(\frac{1}{41}+\frac{1}{42}+...+\frac{1}{50}\right)+\left(\frac{1}{51}+\frac{1}{52}+..+\frac{1}{60}\right)\)
\(S< \left(\frac{1}{31}+\frac{1}{31}+..+\frac{1}{31}\right)+\left(\frac{1}{41}+\frac{1}{41}+..+\frac{1}{41}\right)+\left(\frac{1}{51}+\frac{1}{51}+..+\frac{1}{51}\right)\)
\(S< 10\cdot\frac{1}{31}+10\cdot\frac{1}{41}+10\cdot\frac{1}{51}=\frac{10}{31}+\frac{10}{41}+\frac{10}{51}< \frac{10}{30}+\frac{10}{40}+\frac{10}{50}\)
\(S< \frac{1}{3}+\frac{1}{4}+\frac{1}{5}=\frac{47}{60}< \frac{48}{60}=\frac{4}{5}\left(2\right)\)
Từ (1) và (2) => đpcm
Ta có:
S=131+132+133+...+160S=131+132+133+...+160
⇒S=(131+132+...+140)+(141+142+...+150)+(151+152+...+160)⇒S=(131+132+...+140)+(141+142+...+150)+(151+152+...+160)
Nhận xét:
131+132+...+140>140+140+...+140=14131+132+...+140>140+140+...+140=14
141+142+...+150>150+150+...+150=15141+142+...+150>150+150+...+150=15
151+152+...+160>160+160+...+160=16151+152+...+160>160+160+...+160=16
⇒S>14+15+16=3760>35⇒S>14+15+16=3760>35
⇒S>35(1)⇒S>35(1)
Lại có:
S=(131+132+...+140)+(141+142+...+150)+(151+152+...+160)S=(131+132+...+140)+(141+142+...+150)+(151+152+...+160)
Nhận xét:
131+132+...+140<130+130+...+130=13131+132+...+140<130+130+...+130=13
141+142+...+150<140+140+...+140=14141+142+...+150<140+140+...+140=14
151+152+...+160<150+150+...+150=15151+152+...+160<150+150+...+150=15
⇒S<13+14+15=4760<45⇒S<13+14+15=4760<45
⇒S<45(2)⇒S<45(2)
Từ (1)(1) và (2)(2)
⇒35<S<45⇒35<S<45 (Đpcm)
mình nhằm nha
để gửi lại ,
xin lỗi nhiều
hì
Tham khảo nha bạn:https://olm.vn/hoi-dap/detail/98411629106.html
Ta thấy tổng trên có 30 số hạng. Ta nhóm tổng S thành 3 nhóm.
-> \(S=\left(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{40}\right)+\left(\frac{1}{41}+\frac{1}{42}+...+\frac{1}{50}\right)+\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{60}\right)\)
\(< \left(\frac{1}{30}+\frac{1}{30}+...+\frac{1}{30}\right)+\left(\frac{1}{40}+\frac{1}{40}+...+\frac{1}{40}\right)+\left(\frac{1}{50}+\frac{1}{50}+...+\frac{1}{50}\right)\)
\(=\frac{10}{30}+\frac{10}{40}+\frac{10}{50}=\frac{47}{60}< \frac{48}{60}=\frac{4}{5}\left(1\right)\)
Ta lại có:
\(S>\left(\frac{1}{40}+\frac{1}{40}+...+\frac{1}{40}\right)+\left(\frac{1}{50}+\frac{1}{50}+...+\frac{1}{50}\right)+\left(\frac{1}{60}+\frac{1}{60}+...+\frac{1}{60}\right)\)
\(=\frac{10}{40}+\frac{10}{50}+\frac{10}{60}=\frac{37}{60}>\frac{36}{60}=\frac{3}{5}\left(2\right)\)
Từ (1), (2), ta có:
\(\frac{3}{5}< S< \frac{4}{5}\RightarrowĐPCM\)
\(\dfrac{1}{31}>\dfrac{1}{40}\)
\(\dfrac{1}{32}>\dfrac{1}{40}\)
...
\(\dfrac{1}{40}=\dfrac{1}{40}\)
=>\(\dfrac{1}{31}+\dfrac{1}{32}+...+\dfrac{1}{40}>\dfrac{1}{40}+\dfrac{1}{40}+...+\dfrac{1}{40}=\dfrac{10}{40}=\dfrac{1}{4}\)
\(\dfrac{1}{41}>\dfrac{1}{50}\)
\(\dfrac{1}{42}>\dfrac{1}{50}\)
...
\(\dfrac{1}{50}=\dfrac{1}{50}\)
=>\(\dfrac{1}{41}+\dfrac{1}{42}+...+\dfrac{1}{50}>\dfrac{1}{50}+\dfrac{1}{50}+...+\dfrac{1}{50}=\dfrac{10}{50}=\dfrac{1}{5}\)
\(\dfrac{1}{51}>\dfrac{1}{60}\)
\(\dfrac{1}{52}>\dfrac{1}{60}\)
...
\(\dfrac{1}{60}=\dfrac{1}{60}\)
=>\(\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{60}>\dfrac{1}{60}+\dfrac{1}{60}+...+\dfrac{1}{60}=\dfrac{10}{60}=\dfrac{1}{6}\)
=>\(S>\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{1}{6}=\dfrac{3}{5}\)
\(\dfrac{1}{31}< \dfrac{1}{30}\)
\(\dfrac{1}{32}< \dfrac{1}{30}\)
...
\(\dfrac{1}{40}< \dfrac{1}{30}\)
=>\(\dfrac{1}{31}+\dfrac{1}{32}+...+\dfrac{1}{40}< \dfrac{1}{30}+\dfrac{1}{30}+...+\dfrac{1}{30}=\dfrac{10}{30}=\dfrac{1}{3}\)
\(\dfrac{1}{41}< \dfrac{1}{40}\)
\(\dfrac{1}{42}< \dfrac{1}{40}\)
...
\(\dfrac{1}{50}< \dfrac{1}{40}\)
=>\(\dfrac{1}{41}+\dfrac{1}{42}+...+\dfrac{1}{50}< \dfrac{1}{40}+\dfrac{1}{40}+...+\dfrac{1}{40}=\dfrac{10}{40}=\dfrac{1}{4}\)
\(\dfrac{1}{51}< \dfrac{1}{50}\)
\(\dfrac{1}{52}< \dfrac{1}{50}\)
...
\(\dfrac{1}{60}< \dfrac{1}{50}\)
=>\(\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{60}< \dfrac{1}{50}+\dfrac{1}{50}+...+\dfrac{1}{50}=\dfrac{10}{50}=\dfrac{1}{5}\)
=>\(S< \dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}=\dfrac{4}{5}\)
=>\(\dfrac{3}{5}< S< \dfrac{4}{5}\)
Ta có: S=1/31+1/32+...+1/60 > 10.1/40+10..1/50+10.1/60=1/4+1/5+1/6=37/60 > 3/5
Vậy S>3/5 (1)
S=1/31+1/32+...+1/60<10.1/30+10.1/40+10.1/50=1/3+1/4+1/5=47/60 < 4/5
Vậy S<4/5 (2)
Từ (1) và (2) => 3/5<S<4/5