Tìm X:
a) (X - 1) (X+3)<0
b) (X - 2) (X - 4) (X+5)>0
c) (X2 - 4) (X - 3)<0
d) (X2 - 9) (X+4)>0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a. PT $\Leftrightarrow (3-2x-3-2x)(3-2x+3+2x)=8$
$\Leftrightarrow -4x.6=8$
$\Leftrightarrow -24x=8\Leftrightarrow x=\frac{-1}{3}$
b.
$9x^5-72x^2=0$
$\Leftrightarrow 9x^2(x^3-8)=0$
$\Leftrightarrow x^2=0$ hoặc $x^3=8$
$\Leftrightarrow x=0$ hoặc $x=2$
c.
$5x^4-8x^2-4=0$
$\Leftrightarrow 5x^4-10x^2+2x^2-4=0$
$\Leftrightarrow 5x^2(x^2-2)+2(x^2-2)=0$
$\Leftrightarrow (5x^2+2)(x^2-2)=0$
$\Leftrightarrow 5x^2+2=0$ (loại) hoặc $x^2-2=0$ (chọn)
$\Leftrightarrow x=\pm \sqrt{2}$
d.
PT $\Leftrightarrow [x^2(x+1)-4(x+1)]:(x-2)=0$
$\Leftrightarrow (x^2-4)(x+1):(x-2)=0$
$\Leftrightarrow (x-2)(x+2)(x+1):(x-2)=0$
$\Leftrightarrow (x+2)(x+1)=0$
$\Leftrightarrow x+2=0$ hoặc $x+1=0$
$\Leftrightarrow x=-2$ hoặc $x=-1$
a: Ta có: \(\left(3-2x\right)^2-\left(3+2x\right)^2=8\)
\(\Leftrightarrow9-12x+4x^2-9-12x-4x^2=8\)
\(\Leftrightarrow-24x=8\)
hay \(x=-\dfrac{1}{3}\)
b: Ta có: \(9x^5-72x^2=0\)
\(\Leftrightarrow9x^2\left(x^3-8\right)=0\)
\(\Leftrightarrow x^2\left(x-2\right)\left(x^2+2x+4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
a: Ta có: \(x\left(2-x\right)+x^2+x=7\)
\(\Leftrightarrow2x-x^2+x^2+x=7\)
\(\Leftrightarrow3x=7\)
hay \(x=\dfrac{7}{3}\)
b: Ta có: \(\left(x-4\right)^2-\left(2x+1\right)^2=0\)
\(\Leftrightarrow\left(x-4-2x-1\right)\left(x-4+2x+1\right)=0\)
\(\Leftrightarrow\left(x+5\right)\left(3x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=1\end{matrix}\right.\)
\(a,\Leftrightarrow x\left(x+9\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-9\end{matrix}\right.\\ b,\Leftrightarrow\left(x+4-4\right)\left(x+4+4\right)=0\\ \Leftrightarrow x\left(x+8\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-8\end{matrix}\right.\\ c,\Leftrightarrow x\left(x-4\right)\left(x+4\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\\x=-4\end{matrix}\right.\\ d,\Leftrightarrow\left(x-5\right)^2=0\Leftrightarrow x=5\)
a) \(\Leftrightarrow x\left(x+9\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=-9\end{matrix}\right.\)
b) \(\Leftrightarrow x\left(x+8\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=-8\end{matrix}\right.\)
c) \(\Leftrightarrow x\left(x-4\right)\left(x+4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\\x=-4\end{matrix}\right.\)
d) \(\Leftrightarrow\left(x-5\right)^2=0\\ \Leftrightarrow x=5\)
a)
⇔ \(x^2-16=9\)
⇔ \(x^2=25\)
⇔ \(x=\pm5\)
b)
⇔ \(x^2-4x+4-25x^2+20x-4=0\)
⇔ \(16x-24x^2=0\)
⇔ \(8x\left(2-3x\right)=0\)
⇒ \(\left[{}\begin{matrix}x=0\\2-3x=0\end{matrix}\right.\) ⇔ \(\left[{}\begin{matrix}x=0\\x=\dfrac{2}{3}\end{matrix}\right.\)
Vậy \(x=0\) hoặc \(x=\dfrac{2}{3}\)
c)
⇔ \(3x^2-10x-20=0\)
⇔ \(x^2-2.x.\dfrac{5}{3}+\dfrac{25}{9}-\dfrac{205}{9}=0\)
⇔ \(\left(x-\dfrac{5}{3}\right)^2=\dfrac{205}{9}\)
⇒ \(\left[{}\begin{matrix}x-\dfrac{5}{3}=\sqrt{\dfrac{205}{9}}\\x-\dfrac{5}{3}=-\sqrt{\dfrac{205}{9}}\end{matrix}\right.\) ⇔ \(\left[{}\begin{matrix}x=\dfrac{\sqrt{\text{205}}}{\text{3}}+\dfrac{5}{3}\\x=-\dfrac{\sqrt{\text{205}}}{\text{3}}+\dfrac{5}{3}\end{matrix}\right.\) ⇔ \(\left[{}\begin{matrix}x=\dfrac{15+\text{9}\sqrt{\text{205}}}{\text{9}}\\\text{x}=-\dfrac{15+\text{9}\sqrt{\text{205}}}{\text{9}}\end{matrix}\right.\)
Vậy...
d)
⇔ \(\left(x^2+x\right)^2-49=\left(x^2+x\right)^2-7x\)
⇔ 7x = 49
⇔ x=7
Vậy...
a) Ta có: \(36x^3-4x=0\)
\(\Leftrightarrow4x\left(9x^2-1\right)=0\)
\(\Leftrightarrow x\left(3x-1\right)\left(3x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{3}\\x=\dfrac{-1}{3}\end{matrix}\right.\)
b) Ta có: \(3x\left(x-2\right)+x-2=0\)
\(\Leftrightarrow\left(x-2\right)\left(3x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{-1}{3}\end{matrix}\right.\)
a) Để (m-4)x+2-m=0 là phương trình bậc nhất ẩn x thì \(m-4\ne0\)
hay \(m\ne4\)
b) Để \(\left(m^2-4\right)x-m=0\) là phương trình bậc nhất ẩn x thì \(m^2-4\ne0\)
\(\Leftrightarrow m^2\ne4\)
hay \(m\notin\left\{2;-2\right\}\)
c) Để \(\left(m-1\right)x^2-6x+8=0\) là phương trình bậc nhất ẩn x thì \(m-1=0\)
hay m=1
d) Để \(\dfrac{m-2}{m-1}x+5=0\) là phương trình bậc nhất ẩn x thì \(\dfrac{m-2}{m-1}\ne0\)
\(\Leftrightarrow\left\{{}\begin{matrix}m-2\ne0\\m-1\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m\ne2\\m\ne1\end{matrix}\right.\)
a: \(\Leftrightarrow\left(x+2\right)\left(12-x\right)=0\)
\(\Leftrightarrow x\in\left\{-2;12\right\}\)
b: \(\Leftrightarrow\left(2x+5\right)\left(x-1\right)=0\)
\(\Leftrightarrow x\in\left\{-\dfrac{5}{2};1\right\}\)
a, ta có tổng <0 nên 1 trong 2 số phải có 1 số âm , số còn lại là duong . Mà x-1<x+3 nên x-1 âm và x+3 dưong . Vậy x-1<0 nên x<1;x+3>0nen x>-3.vAY X<1 HOAC X>-3
bạn muốn mình làm cách bth hay lập bảng xét dấu các nhị thức