K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 8 2016

Áp dụng bđt Côsi:

\(B=\frac{3}{2}x^3+\frac{3}{2}x^3+\frac{1}{3x^2}+\frac{1}{3x^2}+\frac{1}{3x^2}\ge5\sqrt[5]{\left(\frac{3}{2}x^3\right)^2.\left(\frac{1}{3x^2}\right)^3}=\frac{5}{\sqrt[5]{12}}\)

Dấu bằng xảy ra khi \(\frac{3}{2}x^3=\frac{1}{3x^2}\Leftrightarrow x^5=\frac{2}{9}\)\(\Leftrightarrow x=\sqrt[5]{\frac{2}{9}}\)

28 tháng 2 2019

=> B = \(\frac{\left(x-1\right)^2+2010}{x^2}=\frac{\left(x-1\right)^2}{x^2}+\frac{2010}{x^2}\)

Vì \(\left(x-1\right)^2\ge0\)\(x^2\)\(\ge\)0 với mọi x 

=> để B bé nhất thì \(\frac{2010}{x^2}\)bé nhất

=> \(x^2\) lớn nhất

=> WTF bạn ghi sai đầu bài à ???

28 tháng 2 2019

Với cả đây là toán 6 mà 

1 tháng 8 2019

\(N=\frac{x^2+2000}{x}=x+\frac{2000}{x}\ge2\sqrt{x.\frac{2000}{x}}=2\sqrt{2000}=40\sqrt{5}\)

Dấu "=" tại \(x=20\sqrt{5}\)

21 tháng 6 2016

Ta có: \(B=\frac{x}{\sqrt{x}}-\frac{2\sqrt{x}}{\sqrt{x}}+\frac{4}{\sqrt{x}}=\sqrt{x}-2+\frac{4}{\sqrt{x}}=\left(\sqrt[4]{x}\right)^2-2.\sqrt[4]{x}.\frac{2}{\sqrt[4]{x}}+\left(\frac{2}{\sqrt[4]{x}}\right)^2+2\)

\(=\left(\sqrt[4]{x}-\frac{2}{\sqrt[4]{x}}\right)^2+2\ge2\)

Vậy Min B = 2  khi x = 4.

Chúc em học tốt :)

16 tháng 12 2017

\(P\ge\frac{2}{\sqrt{xy}}\sqrt{1+x^2y^2}=2\sqrt{\frac{1+x^2y^2}{xy}}=2\sqrt{\frac{1}{xy}+xy}\)\(=2\sqrt{\frac{1}{16xy}+xy+\frac{15}{16xy}}\ge2\sqrt{\frac{1}{2}+\frac{15}{4\left(x+y\right)^2}}=\sqrt{17}.\)

Dấu = xảy ra khi \(x=y=\frac{1}{2}.\)

20 tháng 7 2019

\(1,A=\frac{1}{x^2+y^2}+\frac{1}{xy}=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{2xy}\)

                                             \(\ge\frac{4}{\left(x+y^2\right)}+\frac{1}{\frac{\left(x+y\right)^2}{2}}\ge\frac{4}{1}+\frac{2}{1}=6\)

Dấu "=" <=> x= y = 1/2

20 tháng 7 2019

\(2,A=\frac{x^2+y^2}{xy}=\frac{x}{y}+\frac{y}{x}=\left(\frac{x}{9y}+\frac{y}{x}\right)+\frac{8x}{9y}\ge2\sqrt{\frac{x}{9y}.\frac{y}{x}}+\frac{8.3y}{9y}\)

                                                                                                  \(=2\sqrt{\frac{1}{9}}+\frac{8.3}{9}=\frac{10}{3}\)

Dấu "=" <=> x = 3y

20 tháng 7 2017

Ta có :

\(B=\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}=\frac{4}{2a}=\frac{2}{a}\)

Dấu "=" xảy ra <=> \(x=y=a\)

Vậy \(B_{min}=\frac{2}{a}\) tại \(x=y=a\)