Cho góc \(xOy\) và điểm M , N trong góc. Xác định \(A\in Ox;B\in Oy\)sao cho \(BN+AB+AM\)là ngắn nhất.
x O y M N
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x O y M N A
a
Do Ox là đường trung trực của MA nên OM=OA ( 1 )
Do Oy là đường trung trực của NA nên ON=OA ( 2 )
Từ ( 1 );( 2 ) suy ra đpcm
b
Từ ( 1 ) suy ra \(\widehat{mOx}=\widehat{xOA}=\frac{1}{2}\widehat{MOA}\left(3\right)\)
Từ ( 2 ) suy ra \(\widehat{AOy}=\widehat{yON}=\frac{\widehat{AON}}{2}\left(4\right)\)
Từ ( 3 );( 4 ) suy ra \(\frac{1}{2}\left(\widehat{MOA}+\widehat{AON}\right)=\widehat{xOy}=\alpha\)
\(\Rightarrow\widehat{MON}=2\alpha\)
a: Xét ΔOAH và ΔOBH có
OA=OB
\(\widehat{AOH}=\widehat{BOH}\)
OH chung
Do đó: ΔOAH=ΔOBH
Suy ra: HA=HB
b: Xét ΔOMH vuông tại M và ΔONH vuông tại N có
OH chung
\(\widehat{MOH}=\widehat{NOH}\)
Do đó: ΔOMH=ΔONH
Suy ra: HM=HN
hay ΔHMN cân tại H
c: HA=AB/2=9cm
d: Xét ΔOAB có
OM/OA=ON/OB
nên MN//AB
Đáp án A
Lấy A’, A” lần lượt là điểm đối xứng với A qua Ox và Oy
Tacó:
AB + AC + BC = BA’ + CA” + BC ≥ A’A” Chu vi tam giác ABC:
Dấu bằng xảy ra khi A’, A” , B , C thẳng hàng
qua O x lay D sao cho D diểm doi sung cua a qua O x lay E sao cho E ldiểm em doi sung cua a qua O y doan DE cat O x dâuau thdiểmem B ở do, DE cat O y dâuau thi C ở dó
de dang Cdượcoc tam Giác ABC có chu vi nhnhấtat
x O y M N B A N' M'
Gọi M' , N' lần lượt là các điểm đối xứng của M và N qua Ox và Oy , suy ra M', N' cố định
Khi đó ta có : AM = AM' , BN = BN'
=> AM + AB + BN = AM' + AB + BN ' \(\ge\)M'N' (hằng số)
Vậy AM + AB + BN đạt giá trị nhỏ nhất bằng M'N' khi A,B lần lượt là giao điểm của M'N' với Ox và Oy