Giải hộ tôi 1 câu bài 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
sao toàn mấy chữ là lặp lại hết thế, phải lặp lại để nhấn mạnh từ à hay là sao. ☹
\(x^2+2\left(x+1\right)^2+3\left(x+2\right)^2+4\left(x+3\right)^2=0\)
\(\Rightarrow x^2+2\left(x^2+2x+1\right)+3\left(x^2+4+4x\right)+4\left(x^2+6x+9\right)=0\)
\(\Rightarrow x^2+2x^2+4x+2+3x^2+12+12x+4x^2+24x+36=0\)
\(\Rightarrow10x^2+40x+50=0\)
\(\Rightarrow10\left(x^2+4x+5\right)=0\)
\(\Rightarrow x^2+4x+5=0\)
\(\Rightarrow\left(x^2+4x+2\right)+3=0\)
\(\Rightarrow\left(x+2\right)^2=-3\)
Mà \(\left(x+2\right)^2\ge0\)với mọi \(x\)
Vậy...
Lời giải:
\(B=\left[\frac{6\sqrt{x}+6}{(\sqrt{x}-1)(\sqrt{x}+3)}-\frac{(\sqrt{x}+2)(\sqrt{x}+3)}{(\sqrt{x}-1)(\sqrt{x}+3)}\right].(\sqrt{x}+3)\)
\(=\frac{6\sqrt{x}+6-(x+5\sqrt{x}+6)}{(\sqrt{x}-1)(\sqrt{x}+3)}.(\sqrt{x}+3)=\frac{-\sqrt{x}(\sqrt{x}-1)}{(\sqrt{x}-1)(\sqrt{x}+3)}.(\sqrt{x}+3)=-\sqrt{x}\)
Do đó:
\(P=AB=\frac{\sqrt{x}}{\sqrt{x}-3}\)
\(P=1+\frac{3}{\sqrt{x}-3}\)
Để $P$ max thì $\sqrt{x}-3>0$ và nhỏ nhất.
$\sqrt{x}-3>0\Leftrightarrow x>9$. $x$ nguyên nhỏ nhất khi $x=10$
Vậy $P_{\max}=1+\frac{3}{\sqrt{10}-3}$
Làng tôi nép mình cạnh bờ sông
Mà tôi lại có một cánh đồng
Cánh đồng thì lại cạnh bờ sông
Bạn biết cánh đồng ở đâu không?
Làng tôi nép mình cạnh bờ sông
Sáng ra mở mắt nhìn đàn nghỗng
Chiều chiều thấy mẹ đứng trổng mông
Có ai biết mẹ làm gì không?
a,(x+1)-(x+2)-(x+3)=24
=>x+1-x-2-x-3 =24
=>(x-x-x)+(1-2-3) =24
=> -x-4 =24
=> -x =24+4
=> -x =28
=> x =-28
Vậy x=-28
b,4x+2-3(x-1)=3x-5
=>4x+2-3x+3=3x-5
=>3x-4x+3x =2+3+5
=>2x =10
=>x =5
Vậy x=5
c,x-1-2(x-2)=x-11
=>x-1-2x+4=x-11
=>x-2x-x =-11+1-4
=>-2x =-14
=>x =7
Vậy x = 7
\(\dfrac{2x+1}{x-1}< 1\)
\(\dfrac{2x+1}{x-1}-1< 0\)
\(\dfrac{2x+1-x+1}{x-1}< 0\)
\(\dfrac{x+2}{x-1}< 0\)
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x+2< 0\\x-1>0\end{matrix}\right.\\\left\{{}\begin{matrix}x+2>0\\x-1< 0\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x< -2\\x>1\end{matrix}\right.\\\left\{{}\begin{matrix}x>-2\\x< 1\end{matrix}\right.\end{matrix}\right.\)
Tự kết luận nha
Bài 2:
a: Ta có: \(2x+10=4^5:4^3\)
\(\Leftrightarrow2x=6\)
hay x=3
b: Ta có: \(70-5\left(x-3\right)=45\cdot2022^0\)
\(\Leftrightarrow x-3=5\)
hay x=8
bài 3 nha tui nhầm
`Answer:`
6. \(\left(x^2-x+2\right)^4-3x^2.\left(x^2-x+2\right)^2+2x^4=0\)
\(\Leftrightarrow\left(x^2-x+2\right)^4-x^2.\left(x^2-x+2\right)^2-2x^2.\left(x^2-x+2\right)^2+2x^4=0\)
\(\Leftrightarrow\left(x^2-x+2\right)^2.[\left(x^2-x+2\right)-x^2]-2x^2.[\left(x^2-x+2\right)^2-x^2]\)
\(\Leftrightarrow[\left(x^2-x+2\right)-x^2].[\left(x^2-x+2\right)-2x^2]=0\)
\(\Leftrightarrow\orbr{\begin{cases}\left(x^2-x+2\right)^2-x^2=0\\\left(x^2-x+2\right)^2-2x^2=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}\left(x^2-x+2-x\right).\left(x^2-x+2+x\right)=0\\\left(x^2-x+2-\sqrt{2}x\right).\left(x^2-x+2+\sqrt{2}x\right)=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}\left(x^2-2x+2\right).\left(x^2+2\right)=0\text{(Vô nghiệm)}\\\left(x^2-\left(1+\sqrt{2}\right)x+2\right).\left(x^2+\left(\sqrt{2}-1\right)x+2\right)=0\text{(Vô nghiệm)}\end{cases}}\)
7. \(3\left(-x^2+2x+3\right)^4-26x^2.\left(-x^2+2x+3\right)^2-9x^4=0\)
Đặt \(\hept{\begin{cases}a=\left(-x^2+2x+3\right)^2\\b=x^2\end{cases}}\)
\(\Leftrightarrow3a^2-26ab-9b^2=0\)
\(\Leftrightarrow3a^2-27ab+ab-9b^2=0\)
\(\Leftrightarrow3a\left(a-9b\right)+b\left(a-9b\right)=0\)
\(\Leftrightarrow\left(a-9b\right)\left(3a+b\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}a=9b\\b=-3a\end{cases}}\)
Xét `a=9b`
`=>(-x^2+2x+3)^2=9x^2` (Bạn tự giải nốt nhé.)
Xét `b=-3a`
`=>x^2=-3.(-x^2+2x+3)^2` (Bạn tự giải nốt nhé.)