x^2+y^2+2y-6x+10=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) x2 + y2 - 6x + 2y + 10 = 0
<=> ( x2 - 6x + 9 ) + ( y2 + 2y + 1 ) = 0
<=> ( x - 3 )2 + ( y + 1 )2 = 0
<=> \(\hept{\begin{cases}x-3=0\\y+1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=3\\y=-1\end{cases}}\)
b) 4x2 + y2 - 20x - 2y + 26 = 0
<=> ( 4x2 - 20x + 25 ) + ( y2 - 2y + 1 ) = 0
<=> ( 2x - 5 )2 + ( y - 1 )2 = 0
<=> \(\hept{\begin{cases}2x-5=0\\y-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{5}{2}\\y=1\end{cases}}\)
a) x2 + y2 - 6x + 2y + 10 = 0
=> (x2 - 6x + 9) + (y2 + 2y + 1) = 0
=> (x - 3)2 + (y + 1)2 = 0 (1)
Vì \(\hept{\begin{cases}\left(x-3\right)^2\ge0\forall x\\\left(y+1\right)^2\ge0\forall y\end{cases}}\Rightarrow\left(x-3\right)^2+\left(y+1\right)^2\ge0\forall x;y\)
Đẳng thức (1) xảy ra <=> \(\hept{\begin{cases}x-3=0\\y+1=0\end{cases}}\Rightarrow\hept{\begin{cases}x=3\\y=-1\end{cases}}\)
Vậy x = 3 ; y = -1
b) 4x2 + y2 + 20x - 2y + 26 = 0
=> (4x2 - 20x + 25) + (y2 - 2y + 1) = 0
=> (2x - 5)2 + (y - 1)2 = 0 (1)
Vì \(\hept{\begin{cases}\left(2x-5\right)^2\ge0\forall x\\\left(y-1\right)^2\ge0\forall y\end{cases}}\Rightarrow\left(2x-5\right)^2+\left(y-1\right)^2\ge0\forall x;y\)
Đẳng thức (1) "=" xảy ra <=> \(\hept{\begin{cases}2x-5=0\\y-1=0\end{cases}}\Rightarrow\hept{\begin{cases}x=2,5\\y=1\end{cases}}\)
Vậy x = 2,5 ; y = 1
1.
\(x^2\)+\(y^2\)+2y-6x+10=0
=> \(x^2\)-6x+9 +\(y^2\)+2y+1=0
=> (x-3)\(^2\)+(y+1)\(^2\)=0
pt vô nghiệm
4.
=> \(x^2\)+8x+16+(3y)\(^2\)-2.3.2y+4=0
=> (x+4)\(^2\)+(3y-2)\(^2\)=0
pt vô nghiệm
(x+3)2 + (y+1)2 =0
pt có cặp nghiệm: x= -3
y = -1
( nếu bn nào nghi ngờ sai, hãy thay x;y vào pt sẽ rõ)
a/ Ta có \(\sqrt{x^2-6x+22}+\sqrt{x^2-6x+10}=4\)
\(\Leftrightarrow\left(\sqrt{x^2-6x+22}+\sqrt{x^2-6x+10}\right)\left(\sqrt{x^2-6x+22}-\sqrt{x^2-6x+10}\right)=4A\)
\(\Leftrightarrow4A=\left(x^2-6x+22\right)-\left(x^2-6x+10\right)\)
\(\Leftrightarrow4A=12\Leftrightarrow A=3\)
b/ Tương tự.
Chắc là giải hệ phương trình?
a.
\(\left\{{}\begin{matrix}x^2+x-xy-2y^2-2y=0\\x^2+y^2=1\end{matrix}\right.\)
Xét pt: \(x^2+x-xy-2y^2-2y=0\)
\(\Leftrightarrow\left(x^2-xy-2y^2\right)+x-2y=0\)
\(\Leftrightarrow\left(x+y\right)\left(x-2y\right)+\left(x-2y\right)=0\)
\(\Leftrightarrow\left(x+y+1\right)\left(x-2y\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-y-1\\x=2y\end{matrix}\right.\)
TH1: \(x=-y-1\) thế vào \(x^2+y^2=1\)
\(\Rightarrow\left(-y-1\right)^2+y^2=1\)
\(\Leftrightarrow2y^2+2y=0\Rightarrow\left[{}\begin{matrix}y=0\Rightarrow x=-1\\y=-1\Rightarrow x=0\end{matrix}\right.\)
TH2: \(x=2y\) thế vào \(x^2+y^2=1\)
\(\Rightarrow\left(2y\right)^2+y^2=1\Leftrightarrow5y^2=1\)
\(\Rightarrow\left[{}\begin{matrix}y=\dfrac{1}{\sqrt{5}}\Rightarrow x=\dfrac{2}{\sqrt{5}}\\y=-\dfrac{1}{\sqrt{5}}\Rightarrow x=-\dfrac{2}{\sqrt{5}}\end{matrix}\right.\)
b.
\(\left\{{}\begin{matrix}6x^2-3xy+x=1-y\\x^2+y^2=1\end{matrix}\right.\)
Xét pt: \(6x^2-3xy+x=1-y\)
\(\Leftrightarrow\left(6x^2+x-1\right)-3xy+y=0\)
\(\Leftrightarrow\left(3x-1\right)\left(2x+1\right)-y\left(3x-1\right)=0\)
\(\Leftrightarrow\left(3x-1\right)\left(2x+1-y\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{3}\\y=2x+1\end{matrix}\right.\)
Thế vào \(x^2+y^2=1\) tương tự câu a...
= (x -3)2 +( y+1)2 =0
x = 3
y = -1